FORMULATION OF A COMPUTATIONAL
AEROELASTIC MODEL FOR THE
PREDICTION OF TRIM AND RESPONSE OF
A HELICOPTER ROTOR SYSTEM IN
FORWARD FLIGHT

by
VAITLA LAXMAN

DEPARTMENT OF AEROSPACE ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

April, 2008



FORMULATION OF A COMPUTATIONAL
AEROELASTIC MODEL FOR THE
PREDICTION OF TRIM AND RESPONSE OF
A HELICOPTER ROTOR SYSTEM IN
FORWARD FLIGHT

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of
Doctor of Philisophy

by
VAITLA LAXMAN

to the

DEPARTMENT OF AEROSPACE ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

April, 2008



THESIS SUBMITT

/ ®
L T, kanpur -2

CERTIFICATE

_‘ This is to certify that the work contained in the thesis entitled “Formulation
of a Computational Aeroelastic Model For the Prediction of Trim and
Response of a Helicopter Rotor System In Forward Flight” by Laxman

Vaitla, has been carried out under my supervision and that this work has not been

submitted elsewhere for a degree.

DA AT

il, 2
April, 2008 Prof. C. Venkatesan

Department of Aerospace Engineering

Indian Institute of Technology Kanpur



SYNOPSIS

Rotary wing aeroelasticity is a highly complex phenomenon involving coupling be-
tween flexible blade dynamics, unsteady aerodynamics including stall and unsteady
wake effects. It has progressed considerably in the past four decades. However, be-
cause of the complexities, still there are several unresolved issues related to blade
loads, blade response and vibration of helicopter in forward flight. One such prob-
lem is related to the presence of wide spectrum of frequencies including N, /rev and
its integer multiples (where IV, is the number of blades in the rotor system) in the
vibratory response of the fuselage. Several studies on helicopter vibration and its
control have essentially focused on Nj/rev vibrations. One of the possible reasons
for the presence of frequencies below IV,/rev in the vibratory signal can be due to
unsymmetric structural /mass properties of the rotor blade system. However, even
when the rotor blades are identical, it is possible that asymmetry in the aerodynamic
environment (due to unsteady nonlinear effects) of the rotor blade as it goes around
the azimuth can lead to a vibratory signal which can have frequencies below Ny /rev.
The nonlinearities in the rotor blade aeroelasticity can arise due to: (a) moderate de-
formation of coupled flap (out-of-plane bending)-lag (in-plane bending)-torsion-axial
modes (structural nonlinearity) and (b) unsteady aerodynamics including dynamic
stall and wake effects (aerodynamic nonlinearity).

Structural dynamic modeling of the rotor blade incorporating all the geometric
complexities of the rotor system and flap-lag-axial-torsion deformations of the blade
has reached a high level of sophistication. While formulating the aerodynamic op-
erator, one should consider: (a) unsteady aerodynamics of a rotor blade undergoing
coupled pitching-plunging motion in a time varying oncoming flow, (b) induced flow
(or inflow) at the rotor disc due to rotor blade wake and (c) dynamic stall.

In the absence of a suitable three-dimensional (3-D) aerodynamic model, only two-

dimensional (2-D) models are used in the aeroelastic analysis of rotor blades. The
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classical two-dimensional unsteady aerodynamic models for unstalled flow (attached
flow) condition are: (1) Theodorsen’s model applicable for a pitching and plunging
airfoil with zero mean angle of attack; (2) Greenberg’s theory for a pitching and
plunging airfoil having non-zero mean angle of attack in a time varying on-coming
flow; and (3) Loewy’s model applicable for a pitching and plunging airfoil including
cascade effects (rotor wake is treated in an approximate manner for a hovering rotor).
Because of simplicity in application, most of the aeroelastic studies use Greenberg’s
theory, taking into consideration the wake induced inflow effects.

The wake induced inflow at the rotor disk can be obtained by either prescribed
wake or free wake model. These models are computationally expensive. On the other
hand, dynamic inflow models are global models, which represent the unsteady wake
effects of the rotor system in a simple form. In these models, the unsteady wake-
induced flow through the rotor disk is defined by a set of inflow variables and these
variables essentially provide a correction to the mean inflow. Extending the dynamic
inflow model, Peters and He have developed a generalized wake model. In this model,
the inflow distribution is represented by a set of harmonic functions and Legendre
polynomials (radial shape functions).

The most complicated phenomenon of unsteady aerodynamics is dynamic stall.
During forward flight, the helicopter rotor blades are subjected to time varying on-
coming flow. In order to compensate for this asymmetry in the relative airspeed
between advancing and retreating sides, a time varying (once per revolution) pitch
input is provided to the rotor blades. Since rotor blades are long slender beams, un-
der time varying aerodynamic loads, these blades undergo coupled flap bending, lag
bending, elastic torsion and axial deformations. In addition, the unsteady wake of
the rotor system induces a time varying inflow through the rotor disc. The influence
of this inflow is to modify the effective angle of attack of the blade cross-section.

As a result of these complicated flow conditions and blade motions, some sections
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of the blade undergo dynamic stall in the retreating side of the rotor disc. It is
difficult to predict stall and its effect using theoretical unsteady aerodynamic tools.
So researchers depend on empirical or semi-empirical models. Several mathematical
models that attempt to predict the effects of dynamic stall are available in the liter-
ature. ONERA dynamic stall model is a relatively simple and efficient model, which
can be easily incorporated in any aeroelastic analysis. Recently CFD methods are
applied to predict dynamic stall in airfoils.

In the recent years, several aeroelastic studies were undertaken by combining
different aerodynamic models representing the rotor wake effects and the unsteady
aerodynamic loads on a typical section of a rotor blade. In the present study, five
different combinations of aerodynamic models have been proposed and the influence
of each one of these models on the trim and response characteristics of helicopter
rotor in forward flight is analysed systematically.

The objectives of the present study are:

e Development of a structural dynamic model for a flexible rotor blade with and

without pretwist.

e Detailed analysis of ONERA dynamic stall model. Based on this study, an

improved dynamic stall model is proposed in this thesis.

e Formulation of a time domain computational aeroelastic model by integrating
the structural model, the inflow model, and the dynamic stall model for the

prediction of trim and response of a helicopter rotor system in forward flight.

e Study the influence of nonlinearity due to dynamic stall and aeroelastic coupling
on the response of 2-D airfoil undergoing pitching and plunging motion in a time
varying oncoming flow, simulating the dynamics of a typical section of a rotor

blade in forward flight.



e Formulation of a suitable computational technique for the evaluation of trim and
response of a multi-bladed helicopter rotor system in forward flight. Perform a
systematic analysis to identify the effects of aerodynamic modeling on trim and

rotor loads in forward flight.

e Study the effects of structural couplings due to blade pretwist on trim, blade

response and rotor loads of a helicopter.

The results of the study are presented in two major sections. The first part of the
work addresses the effect of dynamic stall and aeroelastic couplings on the response

of a 2-D airfoil. The important observations of this study can be summarised as:

1. ONERA (EDLin) dynamic stall model has been analysed in relation to Theodorsen’s
and Greenberg’s unsteady aerodynamic theory. It is shown that ONERA (EDLin)
dynamic stall model in the unstalled region is identical to Theodorsen’s model
except that the lift deficiency function C(k) is approximated by a first order
rational approximation. Replacing the first order rational approximation by a
more accurate second order rational approximation, a modified dynamic stall
model is proposed. This modified stall model is shown to provide a better

correlation with experimental stall data.

2. Using the modified stall model, the response characteristics of a 2-D airfoil
undergoing pitching and plunging motion in a pulsating oncoming flow are anal-
ysed to study the effects of dynamic stall. The results of this study show that
dynamic stall in association with aeroelastic couplings above a certain level

leads to bounded chaotic motion of the airfoil.

In the second part of the thesis, a systematic approach is undertaken to analyse
the influence of various aerodynamic models, representing rotor inflow and sectional
aerodynamic loads, on the helicopter trim and response of the rotor blades. The

aerodynamic loads acting on the blade are evaluated at 15 radial stations (starting
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from 0.25R to 0.95R with an increment of 0.05R) for each blade. The total number
of state variables representing the sectional aerodynamic coefficients (lift, drag and
moment) for one blade is 120 (15 radial stations * 8 state variables per stations).
The rotor blade structural model is represented by eight modes consisting of four flap
modes, two lag modes, one torsion mode, and one axial mode. The total number
of state variables representing structural modes per blade is 16. The time varying
inflow is given by three state variables. Therefore, for a four bladed rotor system,
there are in total 547 state variables (480 aerodynamic state variables + 64 structural
state variables + 3 state variables for dynamic wake effects). In the present study,
a four bladed system with proper spacing in the azimuth angle is considered for the
analysis. By solving simultaneously the response of all the blades, one can identify
the difference in the response of the blades as they go around the azimuth. Since
the response and loads of all the blades are solved at every instant of time, the time
varying hub loads and time varying inflow (dynamic wake effects) can be captured.

The most important observations of this study can be summarised as follows:

1. The lateral cyclic pitch setting ( #;.) required for trim is significantly affected
by rotor inflow at low forward speeds, and by dynamic stall effects at high
forward speeds. It is also found that the aerodynamic model, incorporating
dynamic wake and dynamic stall effects, predicts the trim parameter ( 6;.)
whose variation with forward speed resembles closely to those obtained in flight

test.

2. At high forward speeds, the azimuthal location in the advancing side where the

minimum value of the sectional lift occurs, is influenced by dynamic stall effects.

3. At high forward speeds, dynamic stall effects significantly increase the torsional

response of the rotor blade.

4. The results of the present study clearly show that dynamic stall and dynamic
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wake effects introduce large number of harmonics in the hub loads, including

those below the blade passage frequency and its integer multiples.

5. The structural coupling due to blade pretwist is observed to significantly alter
the time variation of the sectional loads as compared to the loads obtained for
a straight untwisted blade. This result indicates that aeroelastic couplings have

a significant influence on the rotor loads.

The thesis is organised in several chapters and each one is addressing a specific
aspect of the problem. Chapter 1 contains the introduction of the problem, literature
survey and objectives. In Chapter 2, structural modeling of the rotor blade has been
developed using Hamilton’s principle. This model considers the moderate deforma-
tions in flap, lag, torsion and axial modes. The coupled rotating natural frequencies
and mode shapes of helicopter rotor blade are evaluated. Chapter 3 provides a de-
scription on inflow modeling and a detailed study of ONERA dynamic stall model.
An improved dynamic dynamic stall is proposed in this thesis, which is refered as
“modsi fied stall model”. Chapter 4 deals with the aeroelastic response analysis of an
airfoil operating under dynamic stall conditions. It is shown that the dynamic stall
in association with aeroelastic coupling can lead to bounded chaotic motion of the
airfoil. Chapter 5 presents the formulation of a time domain computational model
and the solution technique, for the aeroelastic response analysis of a helicopter rotor
system in forward flight. The results of the aeroelastic study are presented in Chapter

6. Concluding remarks of this study are presented in Chapter 7.
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Chapter 1

INTRODUCTION

1.1 Introduction

Formulation and analysis of rotary-wing aeroelastic/aeromechanical problems require
an understanding of wide range of disciplines like, continuum mechanics, unsteady
aerodynamics including stall effects, and control techniques. It is well known that
helicopter rotor blades are long slender beams undergoing moderate structural defor-
mations involving coupled flap (out-of-plane bending), lag (in-plane bending), torsion
and axial modes. Therefore, a thorough knowledge of continuum mechanics is neces-
sary for the development of structural models for rotor blades. Unlike aircraft wings,
the helicopter rotor blades operate in a highly complex aerodynamic environment
where different cross-sections of the blade undergo different adverse aerodynamic
phenomena, like, dynamic stall, reverse flow, compressibility effects, radial flow and
blade-vortex interaction (Fig. 1.1).

The field of rotary-wing aeroelasticity has progressed considerably in the past four
decades (Refs. [1]-[3]). However because of the complexities, still there are several
unresolved issues related to blade loads, blade response and vibrations exist (Refs.
[4]-[6]). In Ref. [4], it is reported that divergence vertical oscillations are observed on
most helicopter configurations and the frequencies of these oscillations are found to be

in the range 3 ~ 4 Hz which is close to the rotor rpm. Bousman in Ref. [5] has observed



that at high forward speed the vibration in the helicopter is significantly influenced
by frequencies other than blade passage frequency and its integer multiples (b/Ny/rev,
b = 1,2,3,..., where N, is the number of blades in the rotor system). In a recent
study reported in Ref. [6], the authors have shown that there is a good correlation
between rotor noise and vibration measured at the floor of the cockpit. The vibratory
signals are observed to have a wide spectrum of frequency contents including those
below N,/rev. There is no published open literature available on theoretical studies
addressing the issue of frequencies below N,/rev on the rotor vibratory loads. One
of the possible reasons for the presence of frequencies below N,/rev in the vibratory
signal can be due to asymmetric structural /mass properties of the rotor blade system
[7]. However, even when the rotor blades are identical, it is possible that asymmetry
in the aerodynamic environment (due to unsteady nonlinear effects) of the rotor
blades as it goes around the azimuth can lead to a vibratory signal which can have
frequencies below N, /rev. The nonlinearities in the rotor blade aeroelasticity can arise
due to: (a) moderate deformation of coupled flap-lag-torsion-axial modes (structural
nonlinearity) and (b) unsteady aerodynamics including dynamic stall and wake effects
(aerodynamic nonlinearity).

Structural dynamic modeling of the rotor blade representing all the geometric
complexities of the rotor system and the coupled flap-lag-axial-torsion motions of the
blade has reached a high level of sophistication (Refs. [8] - [10]). While formulating
the aerodynamic operator, one should consider (a) unsteady aerodynamics of a rotor
blade undergoing coupled pitching-plunging motion in a time varying oncoming flow,
(b) induced flow (or inflow) at the rotor disc due to rotor blade wake, and (c) dynamic
stall.

In the absence of a suitable three-dimensional (3-D) aerodynamic model, only

two-dimensional (2-D) models are used in the aeroelastic analysis of rotor blades.



The classical two-dimensional unsteady aerodynamic models for unstalled flow (at-
tached flow) condition are: (1) Theodorsen’s model [11] applicable for a pitching and
plunging airfoil with zero mean angle of attack; (2) Greenberg’s theory [12] for a
pitching and plunging airfoil having non-zero mean angle of attack in a time varying
on-coming flow; and (3) Loewy’s model [13] applicable for a pitching and plunging
airfoil including cascade effects (rotor wake is treated in an approximate manner for
a hovering condition). Because of the simplicity for application, most of the aeroelas-
tic studies use Greenberg’s theory, taking into consideration the wake induced inflow
effects (Refs. [14]-[17]).

The wake induced inflow at the rotor disc can be obtained by either prescribed
wake or free wake model. These models are computationally expensive. On the other
hand, dynamic inflow models are global models, which represent the unsteady wake
effects of the rotor system in a simple form. In these models, the unsteady wake-
induced flow through the rotor disc is defined by a set of inflow variables and these
variables essentially provide a correction to the mean inflow (Ref. [18]). Extending
the dynamic inflow model, Peters et al. (Ref. [19]) have developed a generalised wake
model. In this model, the inflow distribution is represented by a set of harmonic
functions and Legendre polynomials (radial shape functions).

The most complicated phenomenon of unsteady aerodynamics is dynamic stall.
It is difficult to predict stall and its effect using theoretical unsteady aerodynamic
tools. Hence, most of the researchers depend on empirical or semi-empirical models.
Several mathematical models that attempt to predict the effects of dynamic stall are
available in the literature (Refs. [20]-[24]). ONERA dynamic stall model (Ref. [23])
is a relatively simple and efficient model, which can be easily incorporated in any
aeroelastic analysis. Recently, CFD methods are applied to predict aerodynamic

loads on rotors and airfoils (Refs. [25] and [26]).



1.2 Literature Review

The literature review is divided into three subsections, with each one addressing a
specific aspect of mathematical modeling relevent for the study of aeroelastic problems

in helicopters.
e Section 1 provides a description on structural modeling of rotor blades.

e Section 2 covers the literature on modeling of wake induced inflow at the rotor
disc and sectional aerodynamics in attached (classical unsteady aerodynamic

theories) and separated (2-D dynamic stall) flow regions.

e Section 3 describes the comprehensive aeroelastic models available in the liter-

ature and their contribution towards the study of rotary-wing aeroelasticity.

1.2.1 Structural Modeling of Rotor Blades

Helicopter rotor blades are long slender beams undergoing moderate deformations in
flap, lag, torsion and axial modes. Over the years, several researchers have devel-
oped structural models for the rotor blade undergoing axial, bending and torsional
deformations. Earlier models were restricted to the treatment of isotropic blades.
With increase in the usage of composite materials in the construction of rotor blades,
structural models suitable for composite rotor blades have been developed in the past
two decades. Today, the structural modeling of rotor blades has reached a high level
of maturity.

Since helicopter rotor blades are long slender beams undergoing moderate defor-
mations, a nonlinear strain-displacement model is used to describe the coupling effects
between axial, bending and torsional modes. Generally, the strains are assumed to
be very small in comparison to unity. Such an assumption is consistent with the de-

sign requirement based on the fatigue life consideration which requires that the rotor



blades must have an operating strain level well below the elastic limit of the rotor
blades.

A structural model for a rotor blade undergoing flap-lag-torsional deformations is
developed by Houbolt and Brooks [27]. This model has not included the nonlinear
coupling effects between bending and torsion, which are shown to be important by
later researchers for the dynamic and aeroelastic analysis of helicopter rotor blades.
The importance of these nonlinear coupling effects has been discussed in a review
article by Friedmann [28].

Nonlinear beam theories applicable for moderate deformation of an isotropic beam,
have been developed by several researchers (Refs. [29]-[32]). In these theories, the
rotor blade is modeled as a one-dimensional Euler-Bernoulli beam and its sectional
properties are evaluated from 2-D sectional analysis. These theories assume small
strain and moderate rotation. In developing the final beam equations, higher order
terms are eliminated using an ordering scheme. These moderate deformation beam
theories are validated by comparing the theoretical results with the experimental data
obtained for the static deformation of a cantilever beam [33]. These formulations laid
the foundation of nonlinear structural dynamics of coupled bending, torsion and axial
deformation of twisted nonuniform rotor blades. It may be noted that these models
did not include the effects of cross-sectional warping and transverse shear. These beam
models are later widely used to formulate the inertia and aerodynamic operators for
aeroelastic analysis of helicopter rotor blades.

With the development of composite rotor blades, several researchers proposed
structural models applicable for the analysis of composite beams having arbitrary/thin
walled cross-sections (Refs. [34]-[42]). A detailed review of structural models suitable
for composite rotor blades can be found in Refs. [8] and [43]-[45]. While developing

the theories for composite rotor blades, the importance of cross-sectional warping and



shear effects have been identified and hence these effects are included in the formula-
tion of beam equations. The significance of cross-sectional warping and bending-shear
coupling have been studied in detail in Refs. [46]-[49]. Using a 3-D elasticity formu-
lation, the cross-sectional properties and one-dimensional beam model are extracted
in a systematic approach in Ref. [50]. This approach is denoted by the authors as
“dimensional reduction”.

The structural models suitable for advanced geometry tip shapes (tip sweep and
anhedral) have been developed in Refs. [51]-[55]. These structural models developed
for isotropic as well as composite beams are widely used in the aeroelastic analysis of

rotor blade stability and response.

1.2.2 Aerodynamic Modeling

The aerodynamic modeling essentially has to address two important aspects. One is
related to the evaluation of inflow through the rotor disc and other is the estimation of
sectional aerodynamic loads on the rotor blade. A hierarchy of models have been de-
veloped, starting from simple to computationally intensive mathematical approaches.
In the following two sections, a survey of literature on inflow modeling and sectional

aerodynamic modeling is presented.

(i) Inflow Models

The induced flow through the rotor disc is generated by the shed and trailing wake
vorticies from the rotor blade (Fig. 1.2). The shed vorticies are generated due to the
time variation (function of azimuth angle) in lift at any cross section of the rotor blade.
Trailing vorticies are formed due to variation of lift along the span-wise direction of the
blade. The trailing vorticies curl up and form a strong helical tip vortex. The influence
of the wake vorticies is to create an induced velocity (induced inflow) at the rotor

disc. Most of the earlier vortex theories considered uniform loading along the span



of the blade and this assumption results in only a tip vortex. By assuming infinite
number blades in the rotor system (actuator disc approximation), the structure of
the tip vortex wake is represented as a semi-infinite vertical cylinder for hover and
skewed cylinder for forward flight, as shown in Figs. 1.3 and 1.4, respectively. A brief
historical description on the development of rotor inflow can be found in Ref. [56].

In hover, momentum theory (based on conservation of mass, momentum, and
energy) and vortex theory (semi-infinite vertical cylindrical wake) provide identical
expressions relating induced flow and rotor thrust. Using momentum theory in hover
and fixed wing theory in forward flight as the two extreme conditions, Glauert pro-
vided a general expression relating the induced flow and rotor thrust, which is valid
for all forward speeds starting from hover to horizontal flight. The expression for
induced velocity matches exactly with momentum theory in hover and fixed wing
theory in forward flight. However, at high forward speeds, the rotor disc treated as a
circular wing (due to low aspect ratio) may result in considerable variation in inflow
at the rotor disc.

Using skewed semi-infinite cylindrical wake and assuming uniform loading, Cole-
man, Feingold, and Stempin [57] obtained a closed form expression for inflow, which
is varying linearly along the fore and aft diameter of the rotor disc. The linear varia-
tion is related to a constant, defined in terms of wake skew angle x (Fig. 1.4 ). Drees
assumed a radially constant and azimuthally varying (in sinusoidal form) circulation.
This assumption leads to both tip and shed vortices. By equating the first harmonic
flap moment to zero (valid for articulated blade), the expression for rotor inflow is
obtained, as a function of both radial and azimuth. Mangler and Squire (Refs. [58]
and [59]) obtained the expression for nonuniform inflow in the rotor disc by solving
the Laplace equation of pressure field and using linearised Euler equation. The ex-
pression for the induced velocity is given in the form of a Fourier series. All the above

theories consider the rotor as an actuator disc (with infinite number of blades).



For finite number of blades, the discrete vortex formation from each blade and their
structure has to be properly considered in the inflow calculations. The wake geometry
can be assumed to be prescribed or the sophisticated free wake (which considers the
interaction between the vortices). In the prescribed wake analysis, the geometry of the
vortex sheets from individual blades are prescribed in advance, which implies that the
velocity field has been assumed. In this approach, the wake geometry is specified as a
function of rotor configuration and thrust level, through simple analytical expressions.
Landgrebe (Ref. [60]) demonstrated the practicality of this method by incorporating
an experimentally derived generalised wake description in the UTRC prescribed wake
hover performance analysis. Kocurek and Tangler (Ref. [61]) used a prescribed wake
lifting surface model in their hover performance analysis. Prescribed vortex wake
model suitable for forward flight condition is developed in Ref. [62]. In the free wake
analysis, an initial distribution of the vortex sheets is assumed and the elements of
the vortex sheets are allowed to convect in the velocity field they create. The vortex
elements will move until they take up positions, which are consistent with the velocity
field. This analysis is computationally more expensive than the prescribed wake. The
application of the free-wake analysis can be found in the works of Johnson [63] and
Bagai and Leishman [64]. Gray has discussed some of the aspects of vortex modeling
for rotary wings in Ref. [65]. A detailed description about rotor wake and tip vortices
and their modeling can be seen in Ref. [66].

The early studies (till 1950) have resulted in the formulation of nonuniform and
time invariant inflow for a helicopter rotor. Sissingh was the first to develop a relation
between perturbation in thrust to perturbation in inflow based on Glauert’s theory
(taken from Ref. [67], since original paper could not be obtained). In 1953, Carpen-
ter and Fridovich [68] proposed a dynamic inflow model to investigate the transient
rotor thrust and the inflow buildup during a jump takeoff maneuver. They extended

the momentum theory in hover by including time varying inflow term involving the



apparent mass effect. It is shown that the theoretical results are in good agreement
with the experimental data. It is interesting to note that no further research on the
dynamic aspects of the induced velocity was pursued for the next two decades.

In 1971, extending the work of Sissingh, Curtiss and Shupe [69] developed a quasi-
steady relation between perturbation in inflow to perturbation in rotor thrust, rolling
and pitching moments. It is shown that incorporation of this model in rotor dynamics
results in the definition of an equivalent Lock number. Ormiston and Peters [70]
have expressed the perturbation in inflow to perturbation in rotor thrust, rolling and
pitching moment in a compact matrix form. The perturbation inflow is given in
three terms, representing the three coefficients of a truncated Fourier series upto first
harmonics. Along the lines of Carpenter and Fridovich model, a time lag term is
introduced in the perturbational inflow model by Crews et al. [71].

Using the concept of an apparent mass associated with inflow dynamics, Pitt and
Peters [18] developed a dynamic inflow model consisting of three states representing
the unsteady inflow through the rotor disc. This dynamic inflow model has been
extensively used in rotor flight dynamics and aeromechanic problems (Refs. [72] -
[75]). For detailed discussions of the dynamic inflow models, one can see the review
paper given by Chen [76].

Further development in the inflow model resulted in the formulation of generalised
dynamic wake model by Peters-He (Refs. [19] and [77]-[79]). This generalised wake
model was derived using acceleration potential for an actuator disc. The inflow is
expressed as a Fourier series in azimuth angle and by Legendre functions along the
radial direction. The coefficients of each term in the series is determined by solving
a set of first-order coupled differential equations with integrals of the blade loadings
acting as forcing functions. The elements of the matrices representing the differential
equations depend on the wake skew angle, forward speed, mean inflow, and apparent

mass effects.



The dynamic wake model has been used to compute the induced-flow distribution
of helicopter rotors in forward flight (Ref. [80]). The numerical results were compared
with experimental inflow data and the correlation was found to be good in hover and
forward flight. The dynamic wake model is extensively applied for various aeroelastic
applications. To improve the observed discrepancy between theory and experiment in
off-axis response of the helicopter under maneuver, wake distortion effects have been

incorporated in dynamic wake model (Refs. [81] - [84]).

(ii) Sectional Aerodynamics

(a) Attached Flow: The earliest unsteady aerodynamic theory applicable for an
airfoil oscillating in an incompressible flow was developed by Theodorsen’s [11]. The
airfoil is assumed to be executing simple harmonic pitching and heaving motions
with mean pitch angle set at zero. Greenberg’s theory [12], which is an extension
of Theodorsen’s theory, accounted for: (i) time varying on-coming velocity superim-
posed on a steady velocity, and (ii) a non-zero mean pitch angle. In these theories the
unsteady wake effects are represented by a lift deficiency function C(k), which is a
complex quantity defined in terms of Hankel functions. While applying these theories
to rotary-wing aeroelastic problem, rotor inflow has to be included suitably. In the
application of the above described two-dimensional unsteady aerodynamic theories,
it is often assumed that the lift deficiency function C(k) is equal to unity, and this as-
sumption implies that the unsteady wake effects are totally neglected. This assump-
tion leads to a quasi-steady aerodynamic model. Quasi-steady Greenberg’s theory
has been extensively used in rotary-wing aeroleastic problems (Refs. [85]-[87]). In
Lowey’s theory [13], the helical wake of the rotor was considered by introducing layers
of vorticity extending to infinity in both (fore and aft) directions beneath the airfoil.
In this theory, a similar lift deficiency function was developed which incorporates the

wake spacing. The limitation of Lowey’s theory is that it is applicable only for hover

10



and axial flight conditions.

In all these methods, the theories are formulated in frequency domain and hence
they are strictly valid only at the stability boundaries and not under sub or super
critical conditions. Therefore, there is a need for the development of an unsteady
aerodynamic theory valid for finite time arbitrary motion of the airfoil. Friedmann
and Venkatesan [88] offered a useful method to extract finite state model from classical
two dimensional unsteady aerodynamic theory with Bode plot technique. These finite
state unsteady aerodynamic models have potential application in aeroelastic systems
with active control and transient response analysis. Another important unsteady
aerodynamic theory is based on the work by Leishman (Refs. [89]-[92]). In this
method, the attached flow aerodynamic loads are calculated using an indicial response
method based on the principle of superposition. The indicial response determines
the aerodynamic loading due to a step change in the airfoil downwash at the 3/4
chord position. This response is then convoluted over time to obtain the unsteady
aerodynamic loads on the airfoil.

These classical 2D aerodynamic theories ignore compressibility, viscous effect, and
most importantly separation and dynamic stall. Because of simplicity for application,
most of the aeroelastic studies use Greenberg’s theory, taking into consideration the

wake induced inflow effects.

(b) Separated Flow: During forward flight, helicopter rotor blades are subjected
to time varying oncoming flow. In order to compensate for this asymmetry in the
relative airspeed between advancing and retreating sides, a time varying (once per
revolution) pitch input is provided to the rotor blades. Since the rotor blades are long
slender beams, under time varying aerodynamic loads, these blades undergo coupled
flap bending, lag bending, elastic torsion and axial deformations. In addition, the
unsteady wake of the rotor system induces a time varying inflow through the rotor

disc. The influence of this inflow is to modify the effective angle of attack of the blade
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cross-section. As a result of these complicated flow conditions and blade motions,
some sections of the blade undergo dynamic stall in the retreating side of the rotor
disc.

Dynamic stall is a strong nonlinear unsteady aerodynamic effect associated with
flow separation and reattachment. Several experimental (Refs. [93]-[107]) and theo-
retical (Refs. [108]-[122]) studies are available in the open literature on dynamic stall
of a 2-D airfoil undergoing pitching, plunging motion and time varying oncoming
flow. Most of the experimental studies on dynamic stall phenomenon have focused on
airfoils oscillating only in pitching motion (Refs. [94] and [95]). McCroskey et al. [95]
have shown that the dynamic stall effects depend on the amplitude of oscillation, mean
angle of attack and frequency of motion. Compressibility effects on dynamic stall of
a NACA 0012 airfoil undergoing pitching motion were studied by Chandrashekhara
[97]. The results demonestrated that occurrence of deep stall is delayed to higher
angles of attack with increased reduced frequency, but increasing Mach number alone
has the opposite effect. A comparative study on the effect of pitching and plunging
motions of an oscillating airfoil has been reported by Carta [101] and Ericsson et al.
(Refs. [102]-[104]). The experimental data show that for low angle of attack (about
6 = 2 deg.), pitching and plunging motions have similar effect on the lift and moment
characteristics. However, for high angles of attack (about # = 8 deg.), considerable
differences were observed. The combined effect of time varying oncoming velocity and
pitching motion on the aerodynamic behavior of a NACA 0012 airfoil was investigated
by Favier et al. (Refs. [105]-[107]). It may be noted that, there is no experimental
study available in the open literature on the combined effects of pitching, plunging
and oncoming flow velocity variations on the aerodynamic characteristics of a 2-D
airfoil.

Theoretical models that attempt to predict the effects of dynamic stall range from
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relatively simple semi-empirical models to sophisticated computational fluid dynam-
ics (CFD) methods. One of the earliest semi-empirical model for dynamic stall was
developed by Beddoes [108]. In this model, aerodynamic lift and moment on an air-
foil in attached flow regime is obtained from Duhamel superposition integral using
the Wagner indicial response function. Corrections are applied to Wagner function
to account for the effects of compressibility. Gangwani [109] has developed a syn-
thesised airfoil method for the prediction of dynamic stall. To model the airloads in
attached flow, a Mach-scaled Wagner function is used in the Duhamel superposition
integral. In the separated flow regime, a set of algebraic equations with several em-
pirical coefficients is used to represent the unsteady aerodynamic coefficients of the
airfoil. Leishman and Beddoes [110] have developed a model capable of representing
unsteady lift, moment and drag characteristics of an oscillating airfoil in pitching
motion using Wagner function and flow separation point on the suction side of the
airfoil, identified by Kirchoff flow idealisation. This model was later extended to
include heaving motion [111] and pulsating motion [112]. ONERA (EDLin) model
developed by Petot (Refs. [23], [113], and [114]) describes the unsteady airfoil be-
havior in both attached flow and separated flow of a pitching airfoil using a set of
differential equations. Peters [115] modified Petot’s model [23] by including the ef-
fects of heaving and pulsating oncoming flow in the lift expression and referred it as
‘unified lift model’. Based on the observations of Peters [115], Petot (Refs. [116] and
[117]) proposed an extended dynamic stall model including the effects of pitching,
plunging and oncoming flow velocity variations. The coefficients of the differential
equations of this extended model are determined by parameter identification using
experimental measurements on oscillating airfoils. ONERA (BH) model developed
by Troung (Refs. [118] and [119]), uses a Vander pol Duffing type nonlinear equation

to represent the separated flow conditions. However, in the attached flow region, it
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retains the equation developed by Petot [116]. Some of the above models are com-
pared and well documented by Petot et al. [120]. Recently, CFD methods (Refs.
[121] and [122]) are applied to predict dynamic stall in airfoils. Since, semi-empirical
stall models can be easily integrated to aeroelastic analysis, ONERA and Leishman-
Beddoes dynamic stall models are used in the literature for aeroelastic applications
(Refs. [123]-[126]). Refs. [127]-[136] deal with the application of CFD approach to

predict the rotor blade loads.

1.2.3 Aeroelastic Studies

Aeroelastic stability and response of rotor blade under hovering and forward flight
conditions, has been studied extensively by several researchers. An excellent review
on the developments of rotary-wing aeroelasticity is presented in Refs. [1]-[3]. Earlier
studies used inflow models derived from momentum theory and quasi-steady aerody-
namic models for the evaluation of sectional loads. With the development of pertur-
bation inflow and dynamic inflow models, several studies employed these models in
their analysis (Refs. [137]-[140]).

The application of dynamic wake model for rotor analysis was attempted for the
first time by Ay Su and Peters (Refs. [141] and [142]). In this work, an isolated
elastic rotor system with flapping motion was considered. The results showed that
there is a significant effect of unsteady aerodynamics on the dampings of all the flap
modes of the rotor. The results also showed that fairly good converged dampings
can be obtained with a wake model having three radial shape functions for each
harmonic of the inflow. Manjunath [67], applied dynamic wake model for his work
on rotor stability in hover and forward flight. The results (Refs. [143] and [144])
indicated that analysis with dynamic wake model showed an improved correlation
with the test data. The results also showed that for a better prediction of damping

atleast three radial functions with each harmonic of the wake states are required
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in dynamic wake model. The dynamic wake model was applied to investigate the
aeromechanical stability of a rotor-fuselage system under hover and forward flight
conditions (Ref. [145]). Authors validated their theoretical model with experimental
data on ground resonance of a model helicopter. In all these studies, dynamic stall
effects were not considered.

Tran and Falchero [146] have applied the ONERA stall model to study the stability
and response of an isolated rotor blade in hover and forward flight. A nonuniform
inflow model has been used for the induced inflow calculation. Rogers [147] has
applied the simplified version of ONERA stall model to analyse stabilty and response
of a single section model of a helicopter blade under-going flapping motion. Several
other researchers (Refs. [148]-[150]) have also applied the dynamic stall model in
the aeroelastic stability and response studies of rotor blades. None of the above
models have used either dynamic inflow model or dynamic wake model. The effect
of dynamic stall on flap-lag stability of rotor blade is analysed by Barwey et al.
(Refs. [151] and [152]). The results of this study showed that the dynamic stall
effects improve the correlation with experimental data as compared to quasi-steady
aerodynamic model [153]. ONERA dynamic stall was applied to analyse the nonlinear
stall flutter phenomenon of a 2-D airfoil (Ref. [154]). The mathematical analysis used
Fourier decomposition, harmonic balance, and Newton-Raphson techniques to solve
for the flutter boundary. The study showed that the analytical results compare well
with the experimental data.

In recent years, several aeroelastic studies were undertaken by combining different
aerodynamic models representing the rotor wake effects and the unsteady aerody-
namic loads on a typical section of a rotor blade. These studies can be grouped into
three distinct approaches. Peters et al. [155] have developed a suitable formulation
by combining ONERA stall model and dynamic wake model for rotor blade aeroe-

lastic and control analysis. Chunduru et al. [156] investigated the effects of dynamic
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stall and 3-D wake on trim and lag damping of isolated bearingless rotors. They
concluded that dynamic stall and wake effects appreciably improve the correlation
between theory and experiment for lag damping which is given as a function of for-
ward speed. In a subsequent study, Subramanian et al. [157] investigated a hierarchy
of aerodynamic models. Their work mainly focused on the prediction of trim settings,
regressive lag-mode damping, and root flap moment. A numerical [124] simulation
was carried out to determine the transient response and lag damping of a hingeless
rotor blade. The study showed that the results with dynamic wake model improve
the correlation with experimental data in comparison to uniform inflow model. In a
further study, the authors have shown that dynamic wake and dynamic stall model
provides a better correlation with experimental data on lag damping and flap moment
measured as function of forward speed (Ref. [158]).

In Refs. [159]-[161], the authors have combined rational function approximation
and ONERA stall model to represent unsteady load in attached flow and separated
flow regimes, respectively. Free wake model was used to predict the rotor inflow.
Using this combination of stall and free wake model, they have studied vibration
and noise in helicopters. Description of comprehensive codes for prediction of loads
on helicopter can be found in Refs. [162]-[165]. In Refs. [166]-[174], a combination
of computational fluid dynamics and computational structural dynamics has been
developed to predict rotor loads and the blade response. These studies (Refs. [166]-
[171]) essentially focused on predicting the blade loads for steady and level flight.
Whereas, Bhagwat et al. (Refs. [172]-[174]) have focused on predicting the blade
loads for the case of maneuvering flight. All these studies focused on correlating the
theoretical results with the flight test data of UH-60A (Refs. [175]-[176]).

In general, nonlinear effects are often cited as possible reasons for any observed
difference between theory and experiment (Refs. [177] and [178]). The effect of

nonlinearity due to dynamic stall has been analysed by several researchers. In Ref.
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[150], the authors have studied the effects of structural nonlinearity and ONERA
dynamic stall model on the response of a rotor blade. In the reference [149], the semi-
empirical ONERA aerodynamic model is applied to the study of nonlinear stall flutter
and divergence of cantilevered wings with large amplitude and a high angle of attack.
Based on the comparison of theoretical and experimental data, they concluded that
the nonlinear aeroelastic analysis predicts reasonably the experimentally observed
stall phenomena on the wings. The effect of dynamic stall nonlinearity in introducing
chaotic behaviour of a 2-D airfoil and helicopter rotor blades have been analysed in
Refs. [179] and [180]. They have shown that the necessary condition for the onset
of chaotic response is that the system must be near flutter boundary. An excellent

review on the nonlinear aeroelastic analysis of airfoils is presented in Ref. [181].

1.3 Objectives of the Present Study

The survey of literature clearly indicates that there is continued development in the
theoretical modeling of rotor blade structural dynamics and aerodynamics. Compari-
son of theoretical and experimental data (Flight test data) reveals that still there is a
gap between theory and experiment. Some of the observed phenomenon in flight test
may be due to the nonlinearities associated with the aeroelastic problems and this
thesis attempts to develop a theoretical formulation including the geometrical non-
linearities associated with structural modeling and the aerodynamic nonlinearities
associated with dynamic stall. The complexity of the unsteady aerodynamic model
is categorised into two cases; namely (i) evaluation of rotor inflow, and (ii) evaluation
of sectional aerodynamic loads (It may be noted that this study does not address
issues related to blade vortex interaction, rotor/fuselage aerodynamic interaction and
radial flow effects). Different levels of models are available in the literature for in-
flow calculations. They are: (i) uniform inflow model based on momentum theory,

(ii) Drees model, and (iii) dynamic wake model. The sectional aerodynamic loads
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can be evaluated by: (i) quasi-steady approximation of Greenberg’s theory applicable
for only attached flow conditions, and (ii) dynamic stall model applicable for both
attached and separated flow. In the present study, five different combinations of aero-
dynamic models have been proposed and the influence of each one of these models on
the trim and response characteristics of helicopter rotor in forward flight is analysed
systematically.

The objectives of the present study are:

e Development of a structural dynamic model for a flexible rotor blade with and

without pretwist.

e Detailed analysis of ONERA dynamic stall model. Based on this study, an

improved dynamic stall model is proposed in this thesis.

e Formulation of a time domain computational aeroelastic model by integrating
the structural model, the inflow model, and the dynamic stall model for the

prediction of trim and response of a helicopter rotor system in forward flight.

e Study the influence of nonlinearity due to dynamic stall and aeroelastic coupling
on the response of 2-D airfoil undergoing pitching and plunging motion in a time
varying oncoming flow, simulating the dynamics of a typical section of a rotor

blade in forward flight.

e Formulation of a suitable computational technique for the evaluation of trim and
response of a multi-bladed helicopter rotor system in forward flight. Perform a
systematic analysis to identify the effects of aerodynamic modeling on the trim

and rotor loads in forward flight.

e Study the effects of structural couplings due to blade pretwist on trim, blade

response and rotor loads of a helicopter.
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1.4 Organisation of the Thesis

The thesis is organised in several chapters and each one addresses a specific aspect of
the problem.

Chapter 1 contains the introduction of the problem, literature survey and objec-
tives.

In Chapter 2, structural modeling of the rotor blade has been developed using
Hamilton’s principle. This model includes the moderate deformations in flap bending,
lag bending, torsion and axial modes. These equations are used to obtain the rotating
natural frequencies and mode shapes of helicopter rotor blade.

Chapter 3 provides a description on inflow modeling and detailed study of ONERA
dynamic stall model. An improved dynamic dynamic stall is proposed in this thesis,
which is referred, as “modi fied stall model”. This stall model has been evaluated by
comparing the theoretical results with experimental dynamic stall data available in
the literature for pitching, plunging and fore-and-aft motion of an airfoil.

Chapter 4 deals with the aeroelastic response analysis of an airfoil operating under
dynamic stall conditions. It is shown that dynamic stall in association with aeroelastic
coupling can lead to bounded chaotic motion of the airfoil.

Chapter 5 presents the formulation of a time domain computational model and the
solution technique, for the aeroelastic response analysis of a helicopter rotor system in
forward flight. Five different combinations of aerodynamic models have been proposed
in this thesis.

The influence of five aerodynamic models on the trim and response of a rotor
system has been analysed systematically. The results of the aeroealstic study of
straight and twisted blade configurations are presented in Chapter 6.

Conclusions of this study are presented in Chapter 7.
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Figure 1.1: Schematic diagram of flow structure on a helicopter in forward flight
1. Tip vortices 2. Transonic flow 3. Hub wake 4. Wake and airframe interactions
5. Wake and empennage interactions 6. Wake and tail rotor interactions
7. Blade and tip vortex interactions 8. Blade stall
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Figure 1.2: Rotor blade wake structure
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Figure 1.3: Vertical cylindrical wake structure of helicopter rotor in hover

Figure 1.4: Skewed cylindrical wake structure of helicopter rotor in forward flight
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Chapter 2

Structural Modeling of Rotor
Blade

Helicopter rotor blades are long slender beams, undergoing moderate deformations in
axial, bending and torsional modes. A nonlinear strain-displacement model is used to
describe the coupling effects between axial, bending and torsional deformations. Gen-
erally, the strains are assumed to be small in comparison to unity. This assumption
is consistent in satisfying the design requirement based on fatigue life consideration
which states that the rotor blades must be designed to have an operating strain level

well below the elastic limit of the blade material.

2.1 Rotor Blade Model

The rotor blades are attached to the hub through a complex geometrical and me-
chanical arrangement. The geometrical parameters describing the configuration of
the rotor blade-hub system is shown in Fig. 2.1. The parameter a represents the
torque offset, which is the distance from the center of rotation (hub center) to refer-
ence axis of the blade. The quantities e; and e, represent blade root offset distance
from the hub. B, stands for blade precone, describing the inclination of pitch axis

with respect to (w.r.t.) hub plane. §; and ;s correspond to predroop and presweep,
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respectively representing the orientation of the longitudinal axis w.r.t. pitch axis. A,
and A, represent tip anhedral and sweep. The formulation represented in this section

follows the approach adopted in Refs. [182]-[188].

2.1.1 Basic Assumptions

In the formulation of the dynamic model of the rotor blade with swept tip, following

assumptions are made:
1. The blade is treated as an elastic beam.
2. The blade is modeled by beam type finite elements along the length of the blade.
3. The rotor shaft is rigid.

4. The blade cross section is treated as rigid in its plane but flexible for warping

deformation.

5. The blade cross section has a general shape with distinct shear center, aerody-

namic center and center of mass.
6. The blade undergoes moderate deformation in flap, lag, torsion and axial modes.

7. The blade has non-uniform properties along the span though it is made of

isotropic material.

2.2 Ordering Scheme and Nondimensionalisation

In the formulation of the equations of motion of a rotor blade with swept tip under-
going moderate deformations, a large number of higher order terms are generated. In
order to identify and eliminate higher order terms in a consistent manner, an ordering

scheme is employed. This ordering scheme is based on the assumption that the slopes
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of the deformed elastic blade are moderate and of order €(0.10 < e < 0.20). Or-
ders of magnitude are then assigned to various non-dimensional physical parameters
governing the rotor blade dynamic problem in terms of €. In the derivation of the
governing equations, higher order terms (terms of order greater than €) are neglected

with respect to terms of order 1, i.e.,

O(1) + O(*) = O(1) (2.1)

The order of magnitude of various non-dimensional parameters governing this

problem are given below:

Order 1:
L Tk
COS¢/€’ SlIlQSk, 0[7 E =5 0(1)
10 0
5&() e O(1)
0 0
i e 1 1
Eo () o o(1)
Order €'/2:
0G — 0(61/2)
Order e:
a €1 €y Vg Wg
E’Eaﬁaﬁ;f O(G)
U;ciw;mqsvﬁpaﬁdaﬁs = 0(6)
Order €3/2:

Im,m, Imgc = 0(63/2)

R, R, R, _ 3/2
Ra Ra Raamaeyaez - 0(6 )
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Order €

%7u;wmnm7m<-m = 0(62)

R

It is important to note that ordering schemes are based on physical understanding
of the behaviour of actual configurations. Hence, care must be exercised in deleting
higher order terms, based on this ordering scheme.

In developing the equations of motion of a rotor blade, the physical quantities are
nondimensionalised by the reference parameters given in Table 2.1. Nondimensional

quantities are only used in the subsequent formulations.

2.3 Coordinate Systems

The description of the complex deformation of a rotor blade requires several coor-
dinate systems. The transformation relation between quantities referred in various
inertial, non-inertial coordinate systems is to be established before deriving the equa-
tions of motion of the rotor blade. The relation between two orthogonal systems
X, Y, Z; and X;,Y;, Z; with €, €,; and é,; and €., é,; and €,; as unit vectors along

the respective axes can be written as:

A

émi €xj
ézi ézj

where the transformation matrix [7};] can be obtained using the Euler angles
required to rotate the j—system so as to make it parallel to i—system. The coordinate
systems used in deriving the equation of motion for the rotor model are described

below:
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2.3.1 Hub Fixed Inertial System - R

The coordinate system - R, shown in Fig. 2.2, has its origin at the center of rotor hub
Oy of the unperturbed hub. The Xy axis is pointing towards the helicopter tail, Zx
is pointing upwards and Yz completes a right handed axis system. The unit vectors

along the three axes are é,r, €,z and €,x.

2.3.2 Hub Fixed Moving System - H

The coordinate system - H, shown in Fig. 2.3, is a body fixed system with its origin
fixed at the center of rotor hub Oy of the unperturbed hub. Prior to perturbational
motion of the hub, H—system coincides with R—system. If 6,,60, and 0, represents

the sequential yaw-pitch-roll rotations, then the transformation matrix [Tgg| can be

defined as:
1 0 0 cosfy 0 —sinf, cosf, sinf, 0
Turl=10 cosf, sinb, o % 0 —sinf, cosf, 0
0 —sinf, cosb, sinf, 0 cos0, 0 0 1

(2.3)
Since 0,0, and 0, are assumed to be of order €32, sine and cosine functions can
be approximated as sinf =~ # and cos # =~ 1. By substituting this approximation, the

transformation matrix in the equation, [Ty g] can be simplified as:

1 0. -0,
0,0, +0, 0,0,—6, 1
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2.3.3 Hub Fixed Rotating System - 1

The coordinate system - 1, shown in Fig. 2.4, rotates about Z; axis with speed {2
of the rotor. Its origin is fixed at the center of rotor hub Og. This system can be
obtained by rotating H—system by an azimuthal angle 1, of the £** blade about Z,5

axis. The transformation matrix is given as:

cos  sinyyg 0
[Tig]=| —siney costy O (2.5)
0 0 1
where, azimuthal angle of the k™ blade, v, is defined as:

vy =0+ (k— 1)]2V—7T and ¥ = Qf. (2.6)
b

2.3.4 Rotating System - 2K

The coordinate system - 2K, shown in Fig. 2.5, is a hub fixed coordinate system,
which rotates with k' blade. The origin of the 2K-system is at the location of the

k™ blade root ‘A’ (Fig. 2.1) which is at a distance aé,; + €1, from the hub center.

2.3.5 Preconed, Rotating System - 3K

The system - 3K, shown in Fig. 2.6a, also rotates with blade. This system is ob-
tained by rotating 2K-system by an angle -3, (precone angle) about ys; axis. The

transformation matrix between 2K and 3K systems is given as:

1 0 5
Tol=| 0 1 0 (2.7)
B, 0 1
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2.3.6 Predrooped, Preswept, Pitched, Blade-Fixed Rotating
System - 4K

The 4K - system, shown in Figs. 2.6(a) and 2.6(b), is blade fixed system with its
origin at pitch bearing ‘B’ of the blade. It may be noted that the pitch axis of the
blade is along é,3; direction and the blade reference elastic axis is along the €,4
direction. While changing the control pitch input of the blade, the elastic axis will
move on the surface of a cone whose vertex angle is described by the £, and 3, as

shown in Fig. 2.6(c). The 4K-system is obtained by the following steps:
e Translating the origin of 3K-system by a distance ’e;” along €,3y.
e Then rotating the system by an angle -/, (presweep angle) about zg, axis.
e Then rotating the system by an angle -3, (predroop angle) about ys axis.
e Then rotating the system by an angle 6, (pitch input) about z3; axis.

The transformation matrix is given as:

1 —(BscosOr + Bysinby) (Bqcosbr — Bssinby)
[Tus] = | (Bscosb; + Bysinby) cos 0; sin 0;
—(Bacosfr — Bssin ;) —sin 0 cos 0
(2.8)

2.3.7 Undeformed Element Coordinate System - e

The e - system, shown in Fig. 2.7, has its origin at the inboard node of the finite
element. The axis é,. is aligned with the beam element axis; while the vectors é,,
and é,, are cross sectional coordinate axes. For the straight portion of the blade, the
(Eze, €ye and é,.) system has the same orientation as (€yax, €yar and €,4) system. For

the swept-tip element, the e—system is oriented by rotating the 4 K-system about €,
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by anhedral angle A, and then about é,4 by the sweep angle A,;. The transformation

matrix between 4K and e - systems is given as:

éme éz4k
éye = [Te4] éy4k (29)
éze éz4lc

For the element in the straight portion of the blade

100
Tu)l=1]10 10 (2.10)

0 01

For the swept-tip element

[ cosAgcos A, —sinA; cosAgsinA, -|
[Tes] = | sinA cosA, cosA, sinA,sin A, (2.11)

—sin A, 0 cos A\,

where, A; is the blade tip sweep angle, positive for backward sweep and A, is the

blade tip anhedral angle, positive upward.

2.3.8 Rotating, Blade-Fixed System - 5K

The 5K - system, shown in Fig. 2.8, is cross-sectional coordinate system of the k"
blade. In the undeformed state of the blade, both e and 5K - systems are parallel.
But, the origin of the 5K - system is at a distance xy from the origin of the e - system.
During elastic deformation of the blade, the 5K - system translates and rotates with
the cross-section. After deformation, the origin of the 5K - system, from the origin

of 4K - system, is at the location given by
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n—1

Z e:c4k + xk + uk)ewe + Ukeye + wkeze (212)
i—1

The transformation matrix between e and 5K - system is obtained following a flap-
lag sequence of rotation. The Euler angles are respectively £y and (; corresponding to
the local slope of the deformed blade in flap and lag directions. The transformation

matrix is given by:

cos(r sin¢; 0 cosfBr 0 sinpfg
[T5] = | —sin¢, cos(p O 0 1 0 (2.13)
0 0 1 —sinfBr 0 cos B

Since the angle 5 and ¢ are of order O(e), sine and cosine functions can be
approximated as sinfl &~ 6 and cosf ~ 1. FEuler angles can be expressed in the
terms of the local slope of elastic deformation of the blade as -8, = wj, and (; = v}.

Substituting the above relations in the matrix [T5.] yields

[Tse] = | —vt 1 v, (2.14)

2.3.9 Coordinate System - 6K

The 6K - system, shown in Fig. 2.9, represents the cross-sectional coordinate system
in the deformed configuration of the blade. The term é, — é; represents the directions
of the cross-sectional principal axes. 6K - system is obtained by rotating 5K - system
about €5, through the angle (¢ +60g), where g represents the geometric twist angle
of the cross-section and ¢, represents the elastic twist. The transformation relation

is given as:
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€x 1 0 0 Ex
€y =0 cos(¢p+6g) sin(¢r+6g) &y (2.15)
éz sk 0 — sin(q&k + 9@) COS(¢k + 0@) éz ok

2.4 Kinematics

In this section, an expression for the absolute velocity at any arbitrary point ’p’ on
the blade is derived. During operation, the rotor blade undergoes lag, flap, torsion
and axial modes. In addition, the hub center has both translational (R, R, and
R,) and rotational (6,6, and @,) motion. The formulation of inertia operator and
aerodynamic operator requires a proper description of kinematics of the blade motion.
It may be noted that the length quantities are nondimensional w.r.t. rotor radius R

and time derivatives are nondimensional w.r.t. rotor angular velocity €2.

2.4.1 Position Vector of a Point

The position vector of any arbitrary point ’p’ in the n'? finite element of the deformed

blade with respect to the hub center Oy, is given by
n—1
r_p) = aéy + €169 + Z i)ezak + (T + Uk)ege + Vkpye + Wile + Néy + Cé¢ (2.16)
1—1

Transforming all the unit vectors of Eq. 2.16 to the 4 K-system and neglecting the
higher order terms, the position vector of the £ blade can be written in symbolic

form as:

T_p) = R[Tzéwélk + Tyéyélk + Tzéz4k] (217)

2.4.2 Angular Velocity Vector
The angular velocity vector W of kth blade consists of three componets. They are:
e The rotational speed of the rotor ().
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e The rigid body angular velocity ﬁrigid of the hub due to perturbational rotation

in roll-pitch-yaw (6, 6,,6,).

e The angular velocity contribution due to the rate of change of control pitch

input Q6; to the blade.
The net angular velocity vector can be written as:
W = Qb,n + W rigia + Wrésa (2.18)

where, the rigid body angular velocity is given as:
ﬁm’gid = Q0,61 + 9yéyH +6,6,5) (2.19)

Transforming all the unit vectors of Eq. 2.18 to the 4 K-system and neglecting the
higher order terms, the angular velocity of k* blade can be written in symbolic form
as:

j = Q(wxémzyg + wyéy4k o wzéz4k) (2.20)

2.4.3 Velocity at a Point ‘p’

The absolute velocity vector 7, at a point ‘p’ on the deformed beam can be written

as:

V=Vt 7Ty+d x7, (2.21)

where, 7 g 1s the rigid body perturbational translation of the hub center Og, which
is given as:

Vi = QR(Robon + Ryéyn + Roéop) (2.22)
Transforming all the unit vectors to 4K -system
V = QR((V)abats + (V)yeyar + (V)sbor) (2.23)

The detailed expressions for the various quantities (r_,f, W and 7 g ) defined in Eq. 2.21
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are given in Appendix A.

2.5 Equation of Motion for Rotor Blade

The coupled equations of motion of the rotor blade can be derived using Hamilton’s
principle. The mathematical form of Hamilton’s principle over time ¢; to ¢, is stated

as follows:

to
/ (6U — 6T — 6W.)dt = 0 (2.24)

t1

where U is the strain energy; 7' is kinetic energy; W, is the work done by the non-
conservative loads.
In this section, the expressions for the variation of kinetic energy and strain energy

of the rotor blade are derived.

2.5.1 Kinetic Energy of the Blade

The kinetic energy of the beam, T is defined as:
1
5 WU / oV Vv
2 )y

The kinetic energy of the i element is given by

T, = % /0 o / / oV Vdn d¢ do (2.25)

where 7, ¢ blade cross-sectional principal axes coordinates.

The variation of kinetic energy of the i element can be written as:

5T, = /0 o / / oV 6V dy dC da (2.26)

Substituting for the velocity V} from Eq. 2.21 and integrating 67 by parts with respect
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to time, yields

(le)i
5T, = / / / D[ Zubtt + Zobuy + Zubwg + Z160, + 7. 5wl + ZySebeldn dC da
0

(2.27)

where the terms 2, Z,, Z,, Z,, Z., and Z,, respectively are the coefficients of duy,
dvg, Owg, dv, dw), and d¢y in the variation of kinetic energy expression.

Integration of the expression over the cross-section yields:

(le)i B _ _ _ _
0T, = myQR3 / [Zu0uy, + Zyovg + Zypbwy + Z',0v;, + Z' 0wy, + Zy0 i) dx
0

(2.28)
The nondimensional cross-sectional integrals used in Eq. 2.28 are defined as:

P, / / pdn d¢
min. = [ [ ony e
wu = [ acan ac
T, "= //pCan d¢
Imge = / / pn’dn d¢

I = [ [ pncan ac (2.20)

where m is mass per unit length of the blade; mn,, and m(,, are the first moments
of cross-sectional mass per unit length; I'm,,, Im¢ and Im,; are the cross-sectional

mass moments of inertia per unit length of the beam.
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2.5.2 Structural Modeling

The procedure for the mathematical formulation of the structural model for a beam,
undergoing large (or moderate) deformations can be concisely described by the fol-

lowing sequence of steps.

1. Define the position vector of any point ‘p’ in the undeformed configuration of
the beam w.r.t. a set of coordinate system, which is rotating with the angular

velocity of the rotor.
2. Evaluate the undeformed base vectors.
3. Define the position vector of point ‘p’ in the deformed configuration of the blade.
4. Evaluate the deformed base vectors.

5. Using the definition of strain tensor in the curvilinear coordinate system obtain

the Green’s strain measures.

6. Transform the strains defined in the curvilinear system to a local cartesian

system to properly account for the twist and curvature in the beam

7. In moderate deflection theories, the expressions pertaining to (a) the axial strain
at the elastic axis, (b) the curvature of the deformed elastic axis and (c) twist
of the beam are substituted with approximate nonlinear expressions defined in

terms of the physical displacements and their slopes.

Large deformation theories stop at step 6; whereas moderate deformation theories
impose the approximation described in step 7. The formulation of strain energy
outlined in this section essentially follows the procedure given in the Refs. [182] and

[187).
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2.5.3 Explicit Strain-Displacement Relations

The expressions for strain components in terms of deformations wuy, vg, wg, and ¢ can

be written as (Refs. [182] and [187]):

1 1 1
€re = Ukg+ 5”1%@ + 5“’}%,95 + 5(772 + <2)¢i,w + a,w\Ij + aTO(C\II,ﬂ - 77\11,()

—[ncos(fg + ¢) — (sin(fg + @) vk 4o

—[nsin(fg + ¢) 4 C cos(0g + @)Wk 2z

+1(Vene = T0V2¢) + ¢ (Fag,z + ToVan) (2.30)
Yon = Fan+ ¥y = C(dra + o) (2.31)
Ve = Fne A 0¥ ¢ — (B + o) (2.32)
€mn ~ 0 €c¢ ~0 Yn¢ = ( (233)
Where,
b0 = (Vgg 080G + Wy sinbg)(—vy sinbg + w, cos )

These strain expressions contain seven unknowns which are functions of the axial
coordinate x. The seven unknowns are respectively, three displacements uy, vg, wg;
elastic twist ¢; shear strains ¥,,, 7;c and warping amplitude o. The underlined term
in €., represents the axial strain at the elastic axis. 7y and ¥ represent initial twist
rate and cross-sectional warping function of the blade, respectively. These strain

expressions can be simplified using the following assumptions:

e The transverse shear at the elastic axis is assumed to be zero.
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e « is assumed to be equal to —¢y .

The simplified strain components can be written as:

1, 9 1
€er = Uka T 5Uks T 5Wha T 5

(772 + <2)¢z,w - \Ijgbk,mm —To (C\II,H - 77\1’,4)¢k,z

—[ncos(8g + ¢) — (sin(Og + @) Vg 4o

_[77 Sin(OG + (b) + CCOS(OG + (b)]wk,w:c

Yoy = —(% + g)d)k,z - @50

Yo¢ = =(¥¢= n)bkz + 0o

Where,

BP0 = (VkwzCOSOG + W e Sin ;) (—vg o Sin O + wy 4 cos bg)

2.5.4 Stress-Strain Relations

(2.34)

(2.35)

(2.36)

Assuming that the blade is made of isotropic material, the stress-strain relationship

is given by the following equations:

Oz E 0 O [
om (=110 G O Yan
g z( 0 0 G %v(
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2.5.5 Strain Energy Variation

The strain energy of the beam can be written as:

T
€rx Ozx
1 te
U = §E0R3/0 // Yan Oz dT] dC dx
RETS Ou¢

U = YU

The variation of strain energy of the i element is given by

s
5636;6 Ozx
1 3 (le)i
6’}/334 Ogx¢

The variation of the strain components are given as follows:

5€mm = éuk,m + Uk, 6vk,z + Wk, 6wk,z + (772 + C2)¢k,z 6¢k,z

_ql6¢k,zz — 70 (C\Il,n - 77\11,()5(1516,56

—[77 COS(@G + QS) - CSin(eG’ + ¢)](5vk,zz + (b 5wk,a:a: + W,z 6¢)

—[77 Sin(eG + QS) + CCOS(QG + (b)]((swk,ww - ¢ 5Uk,$$ — Ukxx 5¢)

(5%877 = —(% + <)5¢k,w - C5¢0

Yoo = —(%¢ —1)0Pkx + 100
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(2.39)

(2.40)

(2.41)
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Where,

dpo = (Uk,ze COSOG + Wi gz 8in O ) (—0V 4 sin O + dwy 4 cos bg)

(—Vk z 8in O + Wy, 4 €0s O) (0Vk 24 cOS O + Wy 4y SiN O¢)

It is assumed that the variations of strain components are of the same order as the

corresponding strain components.

2.6 Finite Element Discretisation

The variational expressions associated with kinetic and potential energy of the rotor
blades are nonlinear. The unknowns are the deformation function wug, v, wr and ¢.
These are dependent on both space and time. The spatial dependence is eliminated
using finite element formulation. The blade is divided into sub-regions (finite ele-
ments) as shown in Fig. 2.10 and the total dynamic potential is calculated for each
subregion. By applying Hamilton’s principle to each sub-region, a discretised form
of the equations of motion can be obtained. In this development, each sub-region is
modeled by a straight beam type finite element. These beam elements are located
along the reference elastic axis of the blade.
The discretised form of Hamilton’s principle is written as:

to N
/ S (00 — 6T — SW,a)dt = 0 (2.43)
t1

i=1
Where, N is the total number of finite elements in the model. 6U; is variation of
the strain energy of the i** element. §7; is variation of the kinetic energy of the 5
element. dW,; is the virtual work of the loads on i** element.

The deformations of a beam element are represented in space and time in the
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following manner
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{v}

\ (2.44)

where {¢,}7, {du}T, {ds}?, and {¢,}* are space dependent interpolation functions.

{V},{W},{®}, and {U} are the nodal degrees of freedom representing time depen-

dent part of vy, wg, ¢r and uy, respectively. These are given as follows:

L

(

\

(%1

v

V2

!
Uy

)

s

( )

(2.45)

The nodal coordinates are shown in Fig. 2.11. The variation of the displacement

function for the beam can be written as:

(

\

ov
dw
00
ou

\

/

(6T 00

0 {6} 0

0 0 {e)
I 0 0 0

o | [ spy ]

’ IR (2.46)
0 5{®)

{o.}" | | {U} |

In this development, a cubic Hermite interpolation polynomial, {®¢}, is used for

the bending deflections (v, wx) and a quadratic Lagrangian interpolation polyno-

mial, {®,}, is used for torsional rotation (@) and the axial deflection (uy). The
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mathematical expressions for these polynomials are given as:

3\

)
1—36%+28

() -fo) o) 0t

| L(-e2+ ¢

1—3¢+2¢°
{o}={o}={a}=1a-se .45
—§+2¢°
where £ = “l”—e’“, x = span-wise coordinate of the beam element and [, = length of the
corresponding beam element.

For bending deformations, the nodal degrees of freedom are the displacements and
slopes at both ends of the beam element. Therefore, the resulting elements will have
inter-element continuity for both displacements and slopes. In addition, because of
the cubic Hermite interpolation polynomial, bending strains vary linearly over the
element length. The quadratic interpolation functions are used for torsional rotation
(¢) and the axial deformation (u). This polynomial has the capability of modeling a
linear variation of strains along the element length and therefore provides the same
level of accuracy as the beam-bending element. The nodal degrees of freedom for
axial and torsion deformation are chosen as the values of the displacements function
at the two end nodes and at the mid-point of the element.

The resulting beam element has 14 degrees of freedom: 4 in-plane (lag) bending
degrees of freedom, 4 out-of-plane (flap) bending degrees of freedom and 3 degrees of

freedom each of torsion (¢), and axial deflection (u).
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2.6.1 Element Matrices Associated with Kinetic Energy Vari-

ation

The beam element matrices associated with the kinetic energy variation are derived
by substituting the assumed expressions for the displacements functions in the kinetic
energy variation 07; (Eq. 2.28) and carrying out the integration over the length of
the beam element. The resulting variation of the kinetic energy can be written in the

form:

0 = —{5Q}T([M]14x14{5j} + [MC]14><14{(?} + [ch]14><14{Q}
( .. . .
+[M 1453 4 }%y + [M?)1ax3 Ry + [M?)14x3 Gy

g i .
r -
0,

+[M* 1453 4 éy +{V o+ {VEhaa + {VVaa) (2.49)
0,

where {q} represents the vector of unknown nodal degrees of freedom

T
{¢}ax1 = { vy V] Uy v Wy Wi wy wh uy us uz d1 Pg P3 } (2.50)

Detailed expressions for the various matrices defined in Eq. 2.49 are given in Ap-

pendix B.

2.6.2 Element Matrices Associated with Strain Energy Vari-

ation

The elemental matrix associated with the strain energy variation is derived by sub-

stituting the assumed expressions for the displacement function in the strain energy
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variation dU; (Eq. 2.40) and carrying out the integration over the length of the ele-

ment. The resulting variation of the strain energy can be written in the form:

0U; = {oq}" ((K*}{q} + {F"}) (2.51)

where, [K¥]14x14 is the elemental stiffness matrix, { F¥},4,; is the nonlinear stiffness
vector. By linearisation of nonlinear terms associated with the axial strain at the
elastic axis, the above nonlinear stiffness vector can be written in the following form

as:

{FF} = (K" ){g} +{F"}) (2.52)

The elements of the matrices [K*] and [K*'], defined in Egs. 2.51 and 2.52, respec-

tively are given in Appendix C.

2.7 Results and Validation

The first step in the aeroelastic response study is the evaluation of natural frequencies
and corresponding mode shapes of the rotating blade. Using the inertia and structural
model developed here, natural frequencies and mode shapes are evaluated for different
beam models namely, (i) uniform straight beam (with zero pretwist), (ii) non-uniform
straight beam and (iii) non-uniform twisted beam. The equation for i* finite element

can be written as:

[M]i{§}: + [Kli{q}i =0 (2.53)

where [M]; represents the mass matrix of i element. The stiffness matrix [K]; is a
combination of three components. They are [K¢/]; (given in Eq. 2.49), [KF]; (given in
Eq. 2.51) and [KF']; (given in Eq. 2.52). The element matrices are assembled to form
the global finite element model for the rotor blade. Imposing the root boundary con-

ditions, the corresponding rows and columns from the global matrix are eliminated.
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The resulting matrix equation can be written as:

[M]{q} + [Kl{q} =0 (2.54)

Performing an eigen analysis, the natural frequencies of an undamped rotating blade

in vacuum can be evaluated.

2.7.1 Uniform Straight Blade

In order to validate the finite element blade model developed in this study, the results
of the present analysis are compared with those available in the literature. The
data shown in the Table 2.2 correspond to a uniform and untwisted hingeless blade.
Using this data, the natural frequencies and mode shapes of the rotating blade are
calculated. In the present formulation thirty beam elements of equal length are used.
Table 2.3 shows a comparison of the natural frequencies obtained in this study with
those available in the literature (Refs. [182] and [185]). It can be seen that the natural

frequencies are in good agreement with each other.

2.7.2 Nonuniform Straight Blade

The mass and stiffness properties of a nonuniform rotor blade as a function of radial
station are given in Tables 2.4 and 2.5, respectively. The graphical representation
of these properties are shown in Figs. 2.12 and 2.13, respectively. It may be noted
that the properties of the blade are given from the radial station 0.114 R. From the
figures, it can be seen that both inertia and stiffness properties show large variation
near the tip and root regions of the blade. Using linear interpolation of the properties
within an element, the element stiffness and mass matrices are obtained. The root
stiffness and mass matrices are defined for the element starting from hub centre to
the radial station 0.114 R. Imposing fixed boundary condition at hub centre the root

stiffness and mass matrices are obtained. The rearranged root matrices for assembly
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are given below, along with degrees of freedom indicated out side the matrices. The

root stiffness matrix [K],o0 is given as:

[ 150 0 0

0 10E5 0

0 0 0.132E2

0 0 0

0 0 0

0 0 0

0 0 0
0 0 0

0
0
0
0.08
0
0
0
0

0

0
0.05E2

0

0

0

The root mass matrix [M], .+ is given as:

[ 93E-05 0 0
0 012 0
0 0 0.1
0 0
0 0 0
0 0 0
0 0 0

0 0 0

0

O, S NO

0N 29 P 06V N

0.076
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0.015 0 0
0 0.0073 0
0 0
0 0
0 0
0 0
0 0
0 0
2.6E — 05 0
0 25F - 05
0 0

(i) Nonuniform Straight Blade Configuration

1.0E5 |

P12
U12

V2

o o o O

o

0.025

(2.55)

P12

U2

U2

(2.56)

The rotating natural frequencies and mode shapes for a nonuniform straight blade are

evaluated. For this configuration, because of nonuniform properties, different length

of beam elements are used at different spanwise locations. From the hub centre to

station 0.25 R, 14 elements are used. From station 0.25 R to station 0.8 R (uniform
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section) and from station 0.8 R to tip, 10 and 6 elements are used respectively. In
total the rotor blade was represented by thirty beam elements. The corresponding
total number of degrees of freedom are 240 (after imposing root boundary conditions).

The data shown in the Tables 2.4 and 2.5 correspond to a nonuniform blade.
Using this data, the natural frequencies and mode shapes of the rotating blade are
calculated. Table 2.6 shows the natural frequencies obtained in this study. Mode
shapes corresponding to flap deformation can be seen in Fig. 2.14. Mode shapes of

lag, torsional and axial deformation can be seen in Fig. 2.15.

(ii) Nonuniform Twisted Blade Configuration

For the twisted blade configuration, the blade pretwist starts from section 0.25 R.
From hub centre to section 0.25 R, the pretwist is taken as zero. A linear pretwist of
-8 deg. is taken along the span of the blade. The variation of pitch angle along the
span of the blade is as follows: When the root section (0 to 0.25 R) is at zero pitch
angle, the blade section at 0.25 R has a pitch angle 12 deg. and the pitch angle at
the blade tip is 4 deg.

Frequencies for twisted blade configuration are evaluated and listed in Table 2.7.
Corresponding mode shapes are generated and are shown in Figs. 2.16 and 2.17.
From the figures, it is evident that the twist introduces coupling in flap and lag
modes. The contribution of the lag in first flap mode is close to 6% (Fig. 2.16),

whereas contribution of the flap in first lag mode is less than 1% (Fig. 2.17).

2.8 Summary

The coupled flap-lag-torsion-axial equations of motion of the hingeless rotor blade
have been derived using Hamiltons principle. The rotor blade is modeled using beam
type finite elements and each element has 14 degrees of freedom. They correspond to

four lag degrees of freedom (v1, v}, va, v4), four flap degrees of freedom (w1, w}, we, wh),
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three torsional (¢1, @9, ¢3) and three axial (uq,us,us) degrees of freedom. A cubic
Hermite polynomial is used as interpolation function for the bending deflections (lag
and flap) and a quadratic Lagrangian polynomial is used for torsional rotation and the
axial deflection. A linear structural dynamic problem is first solved in finite element

domain to obtain the rotating mode shapes and frequencies of the rotor blade.
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Table 2.1: Nondimensional parameters

Physical Quantity Reference Parameter
Length R

Time 1/Q

Mass per unit length my

Velocity QR
Acceleration O2R

Force my2? R?
Moment my2? R3
Work/Energy my? R?

Table 2.2: Data for uniform and untwisted rotor blade

Imgg 0.0004
I, 0.0
Oc 0.000
m 1.0
B, 0.0
By 0.0
B, 0.0
0; 0.0
GJ 0.001473
EA 20.0
€1 0.0
€9 0.0
a 0.0
Co=FEACy/EA 0.0
El 0.0301
El,, 0.0106
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Table 2.3: Natural frequencies of uniform rotor blade

Mode Present Study Ref. [185] Ref. [182]
1%t Lag 0.7311 0.7311 0.732
ond Tag 4.4530 4.4532 -

37 Lag 11.2868 L -

1%t Flap 1.1244 171251 1.125
2" Flap 3.4073 3.4266 -

37¢ Flap 7.6171 7.7154 -

15¢ Torsion 3.2633 3.2633 3.263
15¢ Axial 6.9389 6.9389 -
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Table 2.4: Inertia properties of nonuniform rotor blade

7 m Im,, Img¢e

0.114 1.44 5.73E-06 6.41E-05
0.121 1.35 5.41E-06 5.32E-05
0.128 1.27 5.19E-06 4.4E-05
0.135 1.21 5.76E-06  3.91E-05
0.142 1.14 6.66E-06 3.53E-05
0.148 1.07 7.58E-06 3.12E-05
0.156 1.02 8.59E-06 2.70E-05
0.164 0.993 8.94E-06 2.5E-05
0.171 0.961 &.86E-06 2.44E-05
0.179 0.928 8.78E-06  2.38E-05
0.186 0.897 8.67E-06  2.31E-05
0.194 0.866 8.56E-06  2.27E-05
0.202  0.885 8.56E-06  2.27E-05
0.209  0.905 8.29E-06  5.49E-05
0.217 0.924 8.10E-06 1.10E-04
0.224 0.943 7.91E-06  1.65E-04
0.232  0.980 7.91E-06  1.65E-04
0.247 1.03 7.34E-06 = 3.23E-04
0.265 1.03. 7.34E-06 3.23E-04
0.295 1.02 7.34E-06 @ 3.23E-04
0.417 1.02 7.34E-06  3.23E-04
0.477 1.01 7.34E-06 3.23E-04
0.598 1.01 7.34E-06 3.23E-04
0.629 1.00 7.34E-06 3.23E-04
0.720 0.999 7.34E-06 3.23E-04
0.750 0.996 7.34E-06 3.23E-04
0.776 0.995 7.34E-06 3.23E-04
0.800 0.994 7.34E-06 3.23E-04
0.833 0.964 6.38E-06 3.18E-04
0.879 0.927 5.08E-06  3.12E-04
0.917 0.895 3.99E-06 3.10E-04
0.924 0.854 3.78E-06 3.07E-04
0.932 0.814 3.48E-06 2.72E-04
0.955 0.594 2.500E-06 1.68E-04
0.977 0.418 1.22E-06 7.72E-05
1.000 0.249 2.72E-07 2.72E-06
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Table 2.5: Stiffness properties of nonuniform rotor blade

r ElL, Bl GJ

0.114 0.001990078 0.023189 0.002979
0.121 0.001863175 0.019093 0.002863
0.128 0.001892016 0.016094 0.002703
0.135 0.002220812 0.015805  0.00265
0.142 0.002549607 0.01194  0.002689
0.148 0.002884171 0.010095 0.002825
0.156 0.003189893 0.008306 0.002975
0.164 0.003143747 0.008018 0.003047
0.171 0.003091831 0.00773  0.003059
0.179 0.003034148 0.007441  0.00305
0.186 0.002976465 0.007153 0.003039
0.194 0.002901476 0.006864 0.003029
0.202  0.002838024 0.008249  0.003021
0.209 - 0.002878403 0.024227 0.003107
0.217 - 0.002918781 0.040263  0.00329
0.224 - 0.00295916 ~ 0.056241 = 0.003591
0.232 0.003016843  0.079603 0.003892
0.247 0.003057221  0.094601  0.004479
0.265 0.003057221  0.094601 0.004472
0.295 0.003057221 0.094601 0.004472
0.417 - 0.003057221 0.094601 0.004472
0.477 0.003057221 0.094601 0.004472
0.598 0.003057221 0.094601 0.004472
0.629 0.003057221 0.094601 0.004472
0.720 0.003057221 0.094601 0.004472
0.750 0.003057221 0.094601 0.004472
0.776 0.003057221 0.094601 0.004472
0.800 0.002861098 0.094601 0.004472
0.833 0.002388094 0.094024 0.004255
0.879 0.001897785 0.093447 0.003517
0.917 0.001626673 0.093447 0.002923
0.924 0.001511306 0.088832 0.002821
0.932 0.001222889 0.070374 0.002719
0.955 0.001176742 0.041994 0.001669
0.977  0.000152  0.012517 0.000886
1.000  0.000152  0.012517 0.002043
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Table 2.6: Natural frequencies of untwisted non-uniform rotor blade

Mode Present Study
1% Lag 0.701
97 Lag 5.308
1% Flap 1.089
97d Flap 2.896
37 Flap 5.145
4% Flap 7.688
1%t Torsion 4.509
15 Axial 9.155

Table 2.7: Natural frequencies of twisted non-uniform rotor blade

Mode Present Study
1! Lag 0.701
2" Lag 5.293
1%t Flap 1.093
9nd Flap 2.822
37¢ Flap 4.865
A Flap 7.150
15t Torsion 4.508
15 Axial 9.155
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Figure 2.8: Rotating blade fixed system - 5K
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Figure 2.9: Cross-sectional principal co-ordinate system
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Figure 2.10: Finite element model of a blade

Figure 2.11: Element nodal degrees of freedom
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Figure 2.12: Distribution of mass and mass moment of inertia along the radius (nondi-
mensional)
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Chapter 3

AERODYNAMIC MODELS

Modeling of rotary-wing aerodynamics requires consideration of two important as-
pects, namely, evaluation of inflow through rotor disc and estimation of sectional
aerodynamic loads on the rotor blade. In the following, a description of the inflow

models and sectional aerodynamic models is presented.

3.1 Inflow Models

The inflow models represent the rotor wake effects in a simple form. In these models,
the wake-induced flow through the rotor disc is defined by a set of inflow variables.
There are several inflow models available in the literature. The global inflow models
are developed based on the overall rotor aerodynamic thrust, pitch moment, and roll
moment. Local inflow models are developed using prescribed wake, free wake or more
recently by CFD methods. In this study, the rotor inflow is represented by global
models. A description of the global inflow models, starting from steady uniform inflow

model to dynamic wake model is presented in the following sections.

3.1.1 Uniform Inflow Model

In this model, the total inflow through the rotor disc is assumed a constant over

the rotor disc. The expression for the total inflow is obtained using the principles of
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momentum theory and is given as (Refs. [56] and [189]:

Ay = ptana+ A (3.1)
where
o O
24/ (1% +22)

where p is advance ratio and it is given as:

B V cos «
"~ OR

Cr is thrust coefficient and J; is induced inflow. Flow model for momentum theory

analysis of rotor in forward flight is shown in Fig. 3.1.

3.1.2 Drees Model

Drees calculated the rotor induced velocity using vortex theory. Assuming an actuator
disc having radially constant but azimuthally varying (I' = I’y — I'ysin¢) bound

circulation, he obtained an expression for the rotor inflow (Ref. [56]), which is given

as:
A7, ) = ptan o+ A(1 + k7 sine) + k7 cos 1) (3.2)
where
N
2y (1 + A7)
ky =2p

4
ky = g[(l — 1.844%) csc x — cot x|

where y wake skew angle as shown in Fig. 3.2. x is defined as x = tan™" (/).
In the uniform inflow model and Drees model, the rotor inflow is related to the
mean thrust developed by rotor system. It is well known that rotor inflow affects

the rotor thrust and vice versa. Therefore, it is reasonable to assume that whenever

68



there is a time variation in rotor thrust, the inflow also will vary with time. The
formulation of a relation between time varying inflow to time varying rotor thrust
forms the central idea in the development of perturbation inflow model, dynamic
inflow model and dynamic wake model. For the sake of clarity, in the following the

development of these models is described.

3.1.3 Perturbation Inflow Model

In perturbation inflow model, the total induced velocity on the rotor disc due to the

rotor wake is assumed to consist of two parts:
1. a steady inflow, \¢, for trim (equilibrium or mean) loadings and
2. a perturbation inflow, d\(t), for transient loadings.

Therefore, the total induced velocity normal to the rotor disc is expressed as
A=A+ IA(D) (3.3)

Assuming that the perturbation inflow, 6, varies azimuthally as well as linearly
along the radius, the total inflow can be written as

A= Ao+ A+ A %coszﬂ—i—)\ls %sin@b (3.4)

where the inflow variables A{, A1, and A\, are functions of time. These inflow variables
are related to the perturbational thrust, roll and pitch moment coefficients through

the following relation.

A1 Cr
[L]il Ais = CMm (35)
)\lc _CMy

PA
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where [L] is called as coupling or gain matrix and subscript PA represents perturb-
taional aerodynamics. The elements of [L] can be obtained either theoretically by
using momentum theory or experimentally. For axial flow (corresponding to hovering
condition), the elements of [L] can be obtained by applying momentum theory. The
differential thrust on an elemental area dA(= rdrdiy) of the disc is related to the
inflow by the equation

dT = 2 QR (3.6)

Following Johnson [72], the mass flow rate in Eq. 3.6 can be written as
m = pAoQRdA (3.7)

In this case, the mass flow rate is defined in terms of the steady or mean value of the
inflow ).

The aerodynamic thrust can be obtained by integrating elemental thrust over the
complete rotor disc. The aerodynamic roll and pitch moments on the rotor disc,
acting at the hub, can be obtained by taking moments of the elemental thrust about
the hub center and integrating over the complete rotor disc. The trust, pitch and roll

moments are given, respectively as:

T = /OR/OQWdT (3.8)

R 2w

M, = // —r cos YdT (3.9)
OR 0271'

M, = / / rsin $dT (3.10)
o Jo

Substituting Eqgs. 3.4, 3.6 and 3.7 in Eqs. 3.8, 3.9 and 3.10 and integrating the thrust,

pitch and roll moments are obtained. Neglecting higher order terms perturbational
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quantities in thrust, roll moment and pitch moment can be written as:

(T)PA = 27T/)R2A0A1(QR)2 (311)
—(My)ps = ng?’/\o)\lc(QR)Q (3.12)
(Mp)pa = ng?’)\o/\ls(QR)Q (3.13)

Nondimensionalizing Eqs. 3.11-3.13, the relation between perturbational rotor loads

to perturbational rotor inflow can be expressed in matrix form as:

2 0 0 A1 Cr
0 2 0 Ms =9 Cu, (3.14)
0 0 Ae —Chy,

PA
On the other hand, if the mass flow rate m is defined with respect to the total

induced velocity A as

= pA\QR dA (3.15)

Then the perturbational inflow equations become

4)\0 0 0 )\1 CT
0 X O A, ¢ = Ch, (3.16)
0 0 /\0 )\10 _CMy

PA

Comparing Eqgs. 3.14 and 3.16, it is evident that depending on the definition of
mass flow, the coefficients of the elements of [L]~! matrix differ by a factor of 2. These
perturbational inflow models have been used in stability analysis of rotor systems by
various researchers (Refs. [73], [74], [137], [138] and [140]).

Extending the perturbation inflow model to forward flight, the relation between

the time varying inflow variables to time varying rotor loads is derived in Ref. [56],
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which is given as:

A1 Cr
Mis ¢ =[L]§ Cwm, (3.17)
)\10 _CMy
PA
where gain matrix [L] is given as
- . . -
2(Ao+/12+A3)
— 2
[L]=| 0 el (3.18)
2
i ’ ’ VI AT

It may be noted that the gain matrix [L] is diagonal in all the perturbation inflow

models. A more general relationship will render the [L| matrix fully populated.

3.1.4 Dynamic Inflow Model

The perturbation inflow model does not account for the time lag between the aero-
dynamic load and the time variation in inflow. The dynamic inflow models represent
an extension of the perturbation inflow model by taking into account the time lag

between aerodynamic loading and the inflow response.

Using potential flow theory Pitt and Peters developed [18] dynamic inflow model
with three states which takes into account the time lag between inflow and rotor
loads, and effect of forward flight. Pitt-Peters dynamic inflow model has been shown
to provide good correlation with experimental data (Ref. [139]). The three state,

dynamic inflow model in matrix form (as given in Ref. [83]) can be written as :

[M]q Xy o+ VLI Ay =9 O (3.19)
)\-10 )\lc CMy
PA
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L-matrix is given as:

: 0 2% tan X
— —4
[LI=1] o v S (3.20)
us —4 cos
16% tan % 0 1-|—COS)>((
Velocity matrix is given as:
Vi 0 0
ViI=] o0 vk o (3.21)
0 0 Vg
e ve el (3.22)
M+ N
Do Lt L ONFA) (3.23)

Apparent mass matrix is given as:

8
00/ @
M=} 0 22 0 (3.24)
0 0 79

It is observed that in the literature on dynamic inflow models, certain differences
exist in the expressions for the elements Vj; and M;;. In Refs. [139] and [84] the

elements Vi; and M, are given as

Vi = Vg
128
My = —
1 75T

It is shown that the value of M;; as % in the generalised wake model developed

by Peters and He (Ref. [19]). It may be noted that Carpenter and Fridovich [68] have
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originally proposed the value for M;; = %.

3.1.5 Generalised Dynamic Wake Model

Although the Pitt-Peters model has significantly improved the inflow modeling, it
still has some limitations because the time varying inflow is modeled by three states.
This limitation is overcome in the generalised dynamic wake theory developed by
Peters and He (Refs. [19] and [77]) based on acceleration potential for an actuator
disc. This model allows for arbitrary number of inflow states. A brief description of
this model is provided here for continuity. Detailed derivation can be found in Ref.
[77]. The inflow is represented as an infinite series in radial and harmonic functions

which is expressed as:

=Y > ) [o¥(t)cos(py) + B(t) sin(py)] (3.25)

p=0 j=p+1,p+3,---

where the radial function ¢}(7) = ( )/ D ]5” (7)/7 is Legendre polynomials and the

nondimensional radial parameter 7 = v/1 — 7. The radial function ¢7(r) is given as:

—1)@=P)/2(j 4 g)I!
=yl Z q p)Mg+p)(F—q— 1! (3.26)

q=p,p+2,-

The symbol !! is denoted as double factorial.

»_ G+p=DUG—p-1)
= oG =t

In Eq. 3.25, the parameters o (t) and 7 (t) associated with harmonics represent the

(3.27)

inflow states.
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The inflow states are evaluated by solving a set of first order differential equations.

() ( 3 ( A

[MI {a2} ¢+ VLTS {a2} p =59 () ¢ (3.28)

(M8 {pr}y ¢+ VLTS {82} =513 {m) ¢ (3.29)

) L )

In the above Eqgs. 3.28 and 3.29, the subscripts 7, n correspond to radial functions
and superscripts p, m represent the harmonics. The linear operator [M] is associated
with acceleration part of the induced flow, hence it can be called as the apparent
mass matrix, and it is a diagonal matrix. [L¢] and [L*] denote the cosine and sine
influence coefficient matrices respectively and they depend on the wake skew angle

mc

X- [Ve] and [V;] represent velocity matrices. 7/ and 77"

7' represent the cosine and

sine components of the aerodynamic loads acting on the rotor system. Closed-form
expressions for various quantities are given below.

The apparent mass matrix is given as:

M= | ko (3.30)

where

2 m=0,1,2,3,..in Eq. 3.28
K™= ZHm (3.31)

n

g m=1,2,3,...in Eq. 3.29

The influence coefficient matrices are given by

(L] = [L5]e [L°] = [T (3.32)
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[Lo]e = X™[T9m (3.33)
[ZE]e = (X! 4 (=) X g (3.34)
(L5 = [X Pl — (=1 X P ree (3.35)

where [ =min(p,m), X = tan(%) and x is the wake skew angle. The wake skew angle

is defined as tan y = £. The term F?n is defined as

(-1 "2/@n+ 1) (25 + 1)

[ = for even (p —m)  (3.36)
T HRENG )G 0+ G - ) -1
[ = m_sgn(p —m) forodd (p —m)and j=n+1 (3.37)
2, /HPHE /(20 + 1) (25 + 1)
=0 for odd (p+m)and j #n+1 (3.38)

and H™ = ("JE;”;,B:%Z:Z;!U” as defined earlier in Eq. 3.27.

Velocity matrix is given as follows:

372
Vr

[Ve] (3.39)
Vr

Vr

[Vi]

(3.40)

Vr
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Ve = 2+ N2 (3.41)

Vg = ' (3.42)

where A represents the total inflow (freestream plus thrust-induced inflow) and ;
represents thrust induced inflow.

The cosine and sine components of the aerodynamic loads acting on the rotor
system are defined in terms of blade lift weighted with radial polynomial functions

¢ (7). The expressions for the rotor loads are defined as:

Ny

= g 2l St (3.43)

e = _Z[/ QQRg (7)drF] cos(may) (3.44)

= _Z[/ pQ2R3 (7)dr] sin(maby) (3.45)

where the summation is over all the blades (Np) in the rotor system. 1 represents

the azimuthal location of the k¥ blade and is given by v + QW(k 1

. L, represents the
lift per unit span on the k™ blade. The sectional blade lift can be obtained from any
aerodynamic theory, say for example quasi-steady Greenberg’s theory, dynamic stall

theory or by CFD methods.

3.2 Sectional Aerodynamic Loads

The sectional aerodynamic loads can be evaluated by either (i) quasi-steady approxi-
mation of Greenberg’s theory or (ii) dynamic stall model applicable for both attached

and separated flow.
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3.2.1 Greenbergs Theory

The unsteady aerodynamic lift and moment on an oscillating airfoil in pulsating
oncoming stream (Fig. 3.4) is derived by Greenberg [12]. The circulatory and non-

circulatory lift expressions as given by Greenberg are

Lo = 2mpV{Valo + oy ValoC (k)i + [b(% — Q)i+ VifIC(k;)  (3.46)

+hC (k) + 0, VoOC (K, 5)e™""]

Lyec = mpb?[h+VO+V (6 +8) — bab] (3.47)
where
b is half-chord of the airfoil
ba is the position of the elastic axis measured from the centre of the airfoil

C(k) is Theodorsen’s lift deficiency function

h is the vertical (heaving motion) dispalcement of the airfoil

6o is the constant part of angle of attack

7 is the time varying part of angle of attack

Vo is the constant part of oncoming velocity, V = V;(1 + o,e™?)

0,Vpe™"! is the time varying part of oncoming velocity, V = V4(1 + o,e™?)

The total moment about the axis of rotation due to both circulatory and noncircula-

tory parts is

. . ~ 1 1 B
M = mpb’[bah + Vba(by + 0) — Vb(§ —a)f — b2(§ + a?)6)] (3.48)
1 . 1 L -
+27TPVb2(§ + a)[Vobo + 0, Vobo O (ky)e™ "t + [(5 — a)f + Vo] C (kj)

+hC (ky) + 0,Vo0C (K, , 5)€™""]

For low frequency oscillations of the airfoil, the reduced frequency k is low and one
can introduce assumption that the lift deficiency function C(k) is equal to unity.

Invoking this assumption, the circulatory and noncirculatory lift expressions can be
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rewritten as:

. 1 3 ~
Lo = 2mpVb[Voby + 0, Voboe™t + [b(§ —a)f + Vi) (3.49)
+h+ ovVoéeiw”t]
Lye = mpb?[h + VO + V(8o + ) — ba] (3.50)

The moment expression becomes

. . ~ 1 1 .
M = mpb’[bah + Vba(fy + 6) — Vb(§ —a)f — b2(§ + a?)d] (3.51)
P2V + @)Vabl + 0 Vobloe™™! + [b(2 — ) + Vif]

+h+ ov%éei“’”t]

Now, taking the lift and pitching moment at quarter chord i.e., a = —1/2 and by

rearranging the terms one can get the following expressions.

Lo = 2mpVh[Vo(1 + ove®st) (8 + ) + h + b6] (3.52)

Lnc ‘= #ob[h+ VOV (0,4 0) + gé] (3.53)

The pitching moment due to nonecirculatory term is (circulatory term goes to zero)

b
2

b
2

3. =

M = prQ[—gh V2 (0 +6) — Vgé vl B(3)0) (3.54)

Above equations can be rewritten in a modified form by replacing the quantities

(6o + 0) and Vy(1 + o,e™**) by 0 and V, respectively:

Lo = 2mpVb[VO + h+ b (3.55)
Lye = mpb’lh+VO+Vo+ gé] (3.56)
M = 7rpb2[—g(ﬁ +(VO+V0) — vgé - b%%)é] (3.57)
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By replacing the V(% +6) by W, and b0 by W, (Refs. [85], [86] and [116] ) the above

equation is further modified as follows:

1 -
= §pVS[27rWO + 27 W4]

. 1 .
LNC = 7pr2[W0+§W1] (359)
1 -~ . T -
= §pr[7TW0+§W1]

where S (S = 2b.1) is area of the airfoil having unit width. The final form of pitching

moment is

b

2
1 =~ AL I s 3my -

= 50521)[—11)(“/0) x ZVWI - (1_6)bW1]

M (= oo () =V 3Wi = b W] (3.60)

The unsteady drag acting along the resultant velocity is given as:
T
b= ipSV Cp, (3.61)

3.2.2 Dynamic Stall Model

It is well known that during forward flight some sections of the rotor blade undergoes
stall as the blade goes around the azimuth. Hence, dynamic stall effects must be
included in the aeroelastic analysis of rotor blades. In this thesis, a modified stall
model based on the ONERA dynamic stall model has been developed. In the fol-
lowing, a description of the ONERA stall model and the proposed modification are

presented.
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3.2.3 ONERA (EDLin) Model

ONERA (EDLin) model describes the unsteady airfoil behavior in both attached

flow and during dynamic stall using a set of nonlinear differential equations. An

investigation on several airfoil profiles has led Petot et al. (Ref. [23]) to the formulation

of the following mathematical model. The aerodynamic loads on a pitching airfoil

(namely lift, moment and drag) can be expressed in a generic form as:

QR = Q1+Q
For Lift Qi +2Q1 = MQr+(\s+0)f+s0
and
For Moment or Drag Q1 = QL+ (s+0)0+sb
Qo +aQo +71Qy = —[rAQ + Ef]

(with the condition £ = 0 in unstalled state).

The load Q is expressed as a sum of two terms:

(3.62)

(3.63)

(3.64)

(3.65)

e (); represents the load in the attached flow region. It is given interms of a

first-order differential equation in the case of lift. It is an algebraic expression

for the cases of moment or drag. It depends on () which is the linear static

aerodynamic coefficient and the pitching motion 6.

e (), represents the load in the stalled region. The property £ = 0 in unstalled

state is necessary to guarantee the absence of response in (5. Variable AQ =

Q1 — Qs determines the entrance and exit from the stalled region. It is the

difference between the linear static aerodynamic coefficient (Qr) extrapolated

to the stalled region to measured static coefficient (Q;).
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These equations are written in reduced time, 7 = V¢/b. The parameters A\, a,r, E, 0,
and s have to be determined by parameter identification approach using experimental
measurements on oscillating airfoils. Initial dynamic stall model developed is appli-
cable only to pure pitching motion. Subsequently this model was extended to include
heaving and oncoming velocity variations [116]. The extended stall model provides
time variation of lift, drag and moment on an oscillating airfoil. A detailed discussion
on this model is provided below.

The unsteady lift on the airfoil is given as:

1 - . - .
L = pS[sbWo+kbW: + VT +VTs]  (3.66)

: Vel 3C'z; 14

+(&8g;L + d)Wo + aoW; (3.67)
. V.. 1% 1% V...
FQ + al(z)FQ + Tl(€)2r2 = _[Tl(z)QVACZ‘WO/V + EI(E)W()] (368)

where I'y and I'y are circulation per unit length corresponding to unstalled and stalled
regions, respectively. S and b are area and half-chord of the airfoil. W, and W; are
defined as W, = V(% +60) and W, = b9, where V is oncoming velocity, hisa heaving
velocity at elastic axis and 6 is pitch angle in degrees.

The various coefficients of the lift model are given by:

A = 017-0.13M

& = 0.5340.25(V1— M2 —1)

_ 1_M20.285_1i
s = (moml(l - M2 - 1)
~ T T
kE = (=+1. 1—M2)—-1))—

(5 + 1.96n(y/(T = 317) — 1))

o = ( 2m )L

B (1— M?2) 180
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Parameters of the dynamic stall equation (Eq. 3.68) are defined as a; = ag+a;(AC,)? ;
VT =19+ ri(AC,)* and E; = Ei(AC,)* where AC, is the difference between
the linear static lift coefficient extrapolated to the stalled region to measured static
coefficient (Fig. 3.3(a)). The parameters d;, ag, a1, 7o, 71, and E; of lift have to be
determined by parameter identification approach using experimental measurements
on oscillating airfoils.

The unsteady moment on the airfoil is given as:

1 =~ .
M = EPSQb[VQCmL|WO/V + (Em + dm)bWO

+ O VWL + 5,,bWy + V0] (3.69)

V 1% V..
FmZ + am(z)l—\mg + Tm(z)ZFmZ = —[Tm(z)QVAcm‘WO/V + Em(?)WO]

(3.70)

The various coefficients of the moment model are given by:

Sm = =3m/16(=1.26 —1.53 arctan[15(M — 0.7)])1%
SmotOm = =/l + TAM? 4 01| AC|
180
dn =  oum]AG

o1m between 0 and 0.15
T

Tm = —m/4[1 + 1.4M?] 0

where AC,, is the difference between the linear static moment coefficient extrapolated
to the stalled region to measured static coefficient (Fig. 3.3(b)).

Parameters of the dynamic stall equation (Eq. 3.70) are defined as a,, = a0 +
am1 (AC,)? 5 \/Tm = Tmo+Tm1(AC,)? and E = E,,; (AC,)* . The parameters d,,1, o,
Gmls Tmos Tm1 and F,,; of moment have to be determined by parameter identification

approach using experimental measurements on oscillating airfoils.
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The unsteady drag on the airfoil is given as:

1 .
D = §pS[VZCdL\WO/V—|—adeO+VFd2] (371)

.. V.. \% Vv V...
ng—i-ad(z)ng-i-rd(?)?FdQ = _[Td(€)2VACd‘WO/V+Ed(€)WO] (372)

where ACy is the difference between the linear static drag coefficient extrapolated to
the stalled region to measured static coefficient (Fig. 3.3(c)). The various coefficients

of the drag model are given by:

04 = 004 + 014|AC,|
Ood = 0.003

014 between 0 and — 0.05

Parameters of the dynamic stall equation (Eq. 3.72) are defined as aq = a4 +
Aq1 (ACZ)Q ; \/’f'_d = Td0+’l"d1(AOz)2 and £ = Edl (ACZ)Q . The parameters ddl; ado, Ad1,
Td0, Tq1 and Eg4 of drag have to be determined by parameter identification approach

using experimental measurements on oscillating airfoils.

3.2.4 Development of Modified ONERA Stall Model

For an airfoil oscillating under unstalled conditions, Eq. 3.66 can be simplified by

taking ', =0 and AC, = 0 as:
1 . . o 1 -
L= ipS[SbWO + kbW1] + §pS[VF1] (3.73)

This expression for lift can be split into two parts as:

1 = . ~ .
1 =
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Taking Laplace transform of Eq. 3.67 and substituting for I'; in Eq. 3.76, the expres-

sion L¢ can be written as (Note: d = 0 since AC, = 0):

1 o [aSe+ )]

aC
Lo = =pSV :
c = VI (ST + A

[80

LWO —+ 0'W1]) (377)

Assuming harmonic motion for the airfoil (i.e., setting Laplace variable S = iw) and

= 27 and substituting for W, and Wy, the expressions for

Lyc and L for low Mach number can be written as:

Lnc = 5oSal(b(h+ V) + S170) (3.78)

1 - [0.53%2 + 0.17]
Le = =pSVor
o = V(s o

[+ V6 + 06)]) (3.79)

The expressions Ly and Lo are respectively identical to the noncirculatory and
circulatory parts of the unsteady lift obtained by Theodorsen [11], except for the
lift deficiency function C(k). In Eq. 3.79, the underlined term represents a first
order rational approximation to C(k), which approximately satisfies the conditions
at k =0, C(k) =1 and k = oo, C'(k) = 0.5. Higher order rational functions have
been shown to provide excellent correlation to lift deficiency function C'(k). A second
order approximation [88] to Theodorsen lift deficiency function is given as:

Ap(20)2 + Ay (%8) + A,

C(k) = 7})) +B2(%”)+B3

(3.80)

where A; = 0.50, Ay, = 0.393, A3 = 0.0439425, B, = 0.5515 and B3 = 0.0439075.
A comparison of first order approximation and second order approximation [88] with
exact Theodorsen lift deficiency function (C(k) = F(k)+iG(k)) is shown in Fig. 3.5.
It can be seen that second order rational approximation shows better correlation with
exact C(k) than the first order approximation. Replacing the first order approxima-

tion by the second order rational approximation in Eq. 3.79 and applying Laplace
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inverse transform, the modi fied lift equations are obtained. They are given as:

1 = . ~ .
L = 3pS[sbWo +kbW: + VT + VT (3.81)
.. V.. V V aCzL V
Fl + B2(€)F1 + B3(€)2F1 = Ag( b ) 80 W() + A30’( b ) W1 + (382)
ZL V . ach . .

(b) WO+A2(b)0W1+A1 90 W0+A10'Wl

.. V.. V V V...
Ly + a,(z)l“2 + rl(€)2F2 = _[”(3) VAC,lwy v + El(z)WO] (3.83)

In the modi fied stall model, the aerodynamic state I'; is given by a second order
differential equation (Eq. 3.82), whereas original Petot model has a first order dif-
ferential equation (Eq. 3.67). The set of Egs. 3.81-3.83 is referred to as ‘Modified
stall model’ and the set of Eqgs. 3.66-3.68 is denoted as Petot stall model. There is
no change in the form of moment and drag equations, given by Egs. 3.69-3.70 and
Eqgs. 3.71-3.72, respectively.

In the unstalled region, Petot model lift can be shown to reduce to Greenberg’s
theory. Replacing the first order rational function by exact lift deficiency function
C(k) in Eq. 3.79; and assuming V = V; 4+ Ve, 0 = 6, + et h = he™rt; and
substituting for W, and W7, the noncirculatory and circulatory lift expressions given

in Eqgs. 3.78-3.79 can be written as:

1 - . . .. ..
Lvc = 5pSl(mb(VO+VE+h)+ gzﬂe)] (3.84)
1 - - -
Lo = 5pSV(zw)C(k)[voao + Vobe™?t + Gy Vet (3.85)

+Vhei@oten)t 1y 4 bh)]
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Replacing C(k) using the frequency of the corresponding terms in Eq. 3.86 and com-

bining with Eq. 3.84, the unsteady lift expression can be rewritten as:

1 = . . .
L = SpS[(mb(VO+Vo+h)+ gzﬁe)] (3.86)
1 - . )
+5pSV (2m)[Voblo + (Vb + b0)C (ko)

+0,V et O ky) + VOt O (kg ) + RO (k)]

This lift expression is identical to the the expression derived by Greenberg [12].

3.3 Results and Discussion

The correlation of unsteady aerodynamic coefficients using the modi fied stall model
with the available experimental data is discussed in the following sections. The stall
equations (Eqs. 3.81-3.83, 3.69-3.70 and 3.71-3.72) are converted into state-space
form and 4" order Runge-Kutta integration scheme has been used for evaluating the
steady state response. The time step for integration is set at 0.00314 sec and the
initial conditions for aerodynamic states are assumed to be zero. In evaluating the
response, the equations corresponding to stalled domain (Eq. 3.83 for lift, Eq. 3.70
for moment and Eq. 3.72 for drag) have to be included in the solution procedure as
soon as the effective pitch angle of the airfoil crosses the static stall angle during its

motion.

3.3.1 Correlation of Modified Stall Model

Using the modified dynamic stall equations (Eqgs. 3.81 - 3.83 for lift, Egs. 3.69 -
3.70 for moment and Egs. 3.71 - 3.72 for drag), time variation of the aerodynamic
coefficients are generated and are compared with experimental data for three different
cases, namely; (i) pure pitching motion of an airfoil, (ii) pure plunging motion of an

airfoil and (iii) pitching motion of an airfoil in a pulsating oncoming flow. Results are
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also generated for combined pitching and plunging motion in a time varying oncoming

flow, simulating the cross-sectional motion of a helicopter rotor blade in operation.
The unsteady aerodynamic coefficients are generated with the following assumed

static aerodynamic data for NACA 0012 airfoil, taken from Refs. [116] and [117].

Static lift data:

Cy = pob (3.87)
po = 0.100(1 — M®)/\/(1 — M?2)
0 0 < by

(po — p1)(0 — 0a) — bi(exp(hy(0 — 04)) — 1) 0> 0y

AC, =

where

0y = 15(1 — M?)
D1l = 01M4

b= 0.7(1= M)

by = ~05+ (1.5 — M)M?
Static moment data:
Cm, = —0.005—0.05exp(0.5(M — 1)?) (3.88)
0 0 <6,
AC,, =
b (exp(hy (0 —63)) — 1) 0> 6,
where
0, = 15(1— M?)
bm = —0.09 —0.08 exp(—30(M — 0.6)?)
hm = —0.4—021tan '(22(0.45 — M))
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Static drag data:

Cy = 0.008
0 0 < Gd
(Cay —0.30)(1 = ((Omaz — 0)/(Omaz — 0a))) 0> 64

ACy =

where

6 = 15.(1— M?)
Omaz = 25
Ortacn = 18 —2tan™'(4M)
0= (O ) O )

Parameters for lift expression (Eq. 3.83):

Vo= 0.20 + 0.20AC?
a = 0.30 + 0.20AC?

Er~=_=0:05AC?
Parameters for moment expression (Eq. 3.70):

dpm = 0
VTm = 0.20 4+ 0.20AC?
am = 0.25+ 0.10AC?

E, = 0.01AC?
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Parameters for drag expression (Eq. 3.72 ):

o4 = 0.0030 — 0.04|AC,|
VTa = 0.20+0.20AC?
Qg = 0.25

E; = —0.015AC?

Blade semichord is taken as b = 0.2 m and the speed of sound used for calculating

Mach number is assumed as 330 m/sec.

(i)  Pitching Motion

First a comparison of the lift coefficient generated using Modified dynamic stall
model (Egs. 3.81-3.83) and Petot stall model (Egs. 3.66-3.68) is made with the exper-
imental data of an airfoil (NACA 0012) undergoing only pitching motion. The airfoil
is assumed to undergo a pitching motion 6 = 15 + 10cos(0.17) deg. The Mach num-
ber is M = 0.3. The variation of lift coefficient for the two stall models are shown in
Fig. 3.6 along with experimental data taken from Ref. [95]. The direction of variation
of lift coefficient is indicated by arrows. It can be seen that the modified stall model
proposed in this study provides a better correlation with experimental data, partic-
ularly in the reattachment zone represented by low values of Cz; however, it slightly
underpredicts the maximum value of C'z. It may noted that the results presented in
the following are generated using the modi fied stall model.

Keeping M = (.3, the aerodynamic coefficients are generated for various reduced
frequencies (k = 0.03, 0.05 and 0.1) of the pitching motion. The lift, moment and
drag coefficients generated from the modi fied stall model are shown in Fig. 3.7 along
with the experimental data taken from Ref. [95]. The result shows that the modified
stall provides a reasonably good correlation with experimental data. The correlation

seems to be better for the case of lift than for moment and drag, particularly for
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k=0.1.

(ii)  Pitching and Plunging Motion

For an unsymmetrical airfoil (NACA 23010), the time varying lift and moment coeffi-
cients for pure pitching and pure plunging motion in attached flow are generated. The
aerodynamic static data used for this analysis are taken from Ref. [111]. A comparison
of the theoretical results with the experimental data (taken from Ref. [111]) is shown in
Fig. 3.8(a) for pure pitching and Fig. 3.8(b) for pure plunging motion, respectively. In
the case of pure pitching motion, the pitch angle is varied as # = 0.06+5.05 sin(0.1257)
deg. For the case of plunging motion, a mean pitch angle is set at 0.26 deg. and the
effective pitch angle is given by 0,7y = 0.26 + ﬁv’ where h = hsin(0.1257). Mach num-
ber is taken as M = 0.4 and the reduced frequency is &k = 0.125. The results indicate
that the modified stall provides a reasonably good correlation with experimental

data for both lift and moment coefficients.

(iii)  Pitching Motion in Pulsating Oncoming Flow

In Ref. [107], experimental studies have been carried out on a symmetric airfoil
(NACA 0012) undergoing pitching motion in a pulsating oncoming flow. The on-
coming flow velocity is given by V' = 6(1+ 0.356 cos(0.3147)) m/sec. The experiment
was conducted for two pitch angle variations, one pertaining to the motion in the
unstalled region, with § = 6 + 6cos(0.3147 + ®) deg. and the other in the stalled
region given by # = 12+ 6 cos(0.3147 + ®) deg. ® represents the phase angle between
oncoming flow velocity and the pitching motion. Results are presented for the two
cases of phase angles i.e., ® = 0 deg. and ® = 180 deg. Figure 3.9 shows the com-
parison between experimental and theoretical stall data of unsteady lift coefficient.
The results indicate that the mod:i fied stall model provides a better correlation with

experimental data for both unstalled and stalled cases when ® = 180 deg. (Fig. 3.9(b)
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and Fig. 3.9(d)). On the other hand, the correlation is not good for the case when
® =0 deg. (Fig. 3.9(a) and Fig. 3.9(c)). The reason for the poor correlation for this
case may be attributed to the deficiency of the stall model in capturing the effect of
the formation of a larger leading edge bubble (Ref. [107]) as compared to the case of
® = 180 deg..

The variation of drag coefficient for pure pitching motion and pitching motion in
pulsating oncoming flow is shown in Fig. 3.10(a) and Fig. 3.10(b), respectively. The

theoretical results show a very good correlation with experimental data.

(iv) Combined Pitching and Plunging Motion in Pulsating Oncoming
Flow

For the purpose of illustration, theoretical data is generated for an airfoil (NACA
0012) undergoing combined pitching and plunging motion in time varying oncoming
flow, simulating the condition of a helicopter rotor blade cross-section in operation.

The data used for this calculations are:

0 =0+ Ocos(wt+ ®); h=h sin(wt);

V =V, + V cos(wt); h = 0.42 m;
Vo =100 m/sec; V = 39.6 m/sec;
b=0.2m; w=25rad/sec

k = 0.05; ® =0 deg.
Case(i)

0y = 6 deg.

0, = 6 deg.
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Case (ii)

6y = 12 deg.

01 = 6 deg.

The results are generated for two pitch angle variations, one pertaining to low mean
angle 6, = 6 deg. and the other, corresponding to high mean angle 6, = 12 deg. The
variation of aerodynamic coefficients are shown in Fig. 3.11(a) and Fig. 3.11(b). Since
there is no experimental data available for comparison, these results are presented for

the sake of completeness and illustration.

3.4 Summary

In this chapter, a description of the inflow models and sectional aerodynamic models
is presented. The development of global inflow models, starting from simple uniform
inflow model to computationally intensive dynamic wake model, has been addressed.
ONERA (EDLin) dynamic stall model has been analysed in relation to Theodorsen’s
and Greenberg’s unsteady aerodynamic theories. It is shown that ONERA (EDLin)
dynamic stall model in the unstalled region is identical to Theodorsen’s model except
that lift deficiency function C(k) is approximated by a first order rational approxi-
mation. Replacing the first order rational approximation by a more accurate second
order rational approximation, a modified dynamic stall model is proposed in this
study. This improved stall model is shown to provide a better correlation with exper-

imental stall data, for pitching, plunging oscillations and pulsating oncoming flow.
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Figure 3.1: Flow model for momentum theory in forward flight
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Figure 3.2: Definition of a skew angle
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Figure 3.3: Definition of the static aerodynamic coefficients
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Figure 3.4: Geometry of an oscillating airfoil
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Figure 3.5: Theodorsen’s lift deficiency function
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Figure 3.6: Mod: fied stall model compared with experimental data and Petot Model:
6 = 15° +10° cos(0.17), M = 0.3
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Figure 3.7: Aerodynamic hysteresis loops generated for various reduced frequencies
6 = 15° +10° cos(k7), M = 0.3: (a) k£ =0.03, (b) £ =0.05, (c) k£ =0.1.

99



L L ! I I I

0.6 Modified Model —— 0.6
(0.2 [Theory Ref. [111] ------ == | )]
Cz [ Expt. Ref. [111] ©° 2 =277 7 :
—02 = 02
06, = 0.6
-6 -2 2 6 -6
0.04 - f 0 04

0 (deg)
(a) Pitching Motion

0 efr. (deg)
(b) Plunging Motion

Figure 3.8: Lift and moment coefficients generated for unsymmetrical airfoil for pitch
and plunge motion: Pitching motion 6 = 0.06° +5.05° sin(0.1257), M = 0.4; Plunging

motion f,7; = 0.26° + 3.10° sin(0.1257), M = 0.4.
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Figure 3.9: Lift coefficient generated for pitching motion (6 = 6y + 6 cos(0.3147 +
®)deg.) in pulsating flow (V = 6+ 2.136 cos(0.3147) m/sec.,): (a) 6y = 6°,P = 0° (b)
By = 6°,& = 180° (c) fy = 12°,® = 0° (d) f = 12°, ® = 180°.
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Figure 3.10: Drag coefficient generated for (a) pitching motion (8 = 6, +
6 cos(0.3147 + ®) deg.) and (b) pitching motion in pulsating oncoming flow (V =
6 + 2.136 cos(0.3147) m/sec.,) with & = 0°.
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Figure 3.11: Aerodynamic hysteresis loops for combined pitching and plunging motion
(Bers = 0+ % in degrees) in pulsating flow: (a) 6 = 6°,® = 0° (b) 6y = 12°,® = 0°.
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Chapter 4

RESPONSE OF 2-D AIRFOIL
MODEL

4.1 Introduction

In general, nonlinear effects are often cited as possible reasons for any observed dif-
ference between theory and experiment [177]. The major sources of nonlinearity in
rotary wing aeroelasticity are due to: (i) geometric nonlinearity associated with mod-
erate deformation of the rotor blade and (ii) aerodynamic nonlinearity due to dynamic
stall. In this chapter an attempt has been made to understand the influence of aero-
dynamic nonlinearity due to dynamic stall on the response of a 2-D airfoil, by the
formulation and solution of a nonlinear aeroelastic response problem. The response
of a 2-D airfoil undergoing pitching and plunging motion in a pulsating flow, simu-
lating the condition of a typical cross-section of a helicopter rotor blade in forward
flight, is analysed. The modeling consists of linear structural model combined with a

nonlinear aerodynamic model.
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4.2 2-D Airfoil Response

Figure 4.1 shows a model of a 2-D airfoil undergoing pitching and plunging motions.

The coupled equations of motion can be written as:

mh + Syp + Kph = —L (4.1)

Isb+ Syh+ Ky = M

where S, represents the inertia coupling, ¢ represents elastic twist and A denotes the
heaving motion. In Fig. 4.1, # represents the input pitch angle and V' represents the
oncoming flow velocity.

The response of the airfoil is analysed for different cases to bring out: (i) the effect
of dynamic stall modeling in comparison to quasi-steady approximation of Green-
berg’s aerodynamic theory (i.e., C'(k) ~ 1); and (ii) influence of aeroelastic couplings
(pitch-heave coupling due to Sy) in association with dynamic stall. The aerodynamic
loads are evaluated by using either (i) Modified dynamic stall model or (ii) Green-
berg’s quasi-steady model. For the sake of clarity, a brief mathematical description

of these models is provided.

4.2.1 Modified ONERA Dynamic Stall Model

The unsteady lift on the airfoil is given as:

L = %pS[is0+/%bW1+vr1+vr2] (4.2)
. V.. 1% V. ,0C,, 1%
F1+B2(€)F1+B3(€)2F1 = /13(3)2 5 W0+A?,(;(€)2W1 + (4.3)
V.,0C,, .- V. .. 0C,, .
Az(z) 50 W0+A2(€)0W1+A1 50 Wo + AioW,
. V.. 1% 1% V..
FQ + al(E)FQ + T[(g)QFQ = —[TZ(K)QVACAWO/V + El(g)Wo] (44)
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where A; = 0.50, Ay = 0.393, A3 = 0.0439425, B, = 0.5515 and Bs = 0.0439075.

The unsteady moment on the airfoil is given as:

1 - .
M = §p52b[V2CmL|W0/V + (5-m + dm)bWO

+ 0 VW + 5mbWy + Vo] (4.5)
.. V.. 1% V V...
Fm2 + am(?)FmZ + rm(z)QFmQ = _[Tm(€)2VACm|WO/V + EW(X)WO] (46)

The various parameters Wy, Wi, h, 6, V, AC,|lwyyv, ACk|wev and Cr,, |wy /v
are defined as in Chapter 3. It is to be noted that the effective angle of attack is to
be specified in degrees. The various coefficients of the modified lift model (Egs. 4.2

- 4.4) used in this study are given as:

. 1 L2 0.285_1L
~ ™ v
= (= +1. 1—-M2)—-1))—
27 ™
¢ 2 (o)L
(1—Mz) 180
a; = 0.30+0.20AC?

VT = 0.2040.20AC?

E, = —0.05AC?

The various coefficients of the moment model (Eqs. 4.5-4.6) used in this study are

given as:
T
G = ——[1+1.4M2]—
dm = 0'1m.|ACZ|, (Ulm:()(])
3
S = —%(—1.26 — 1.53 arctan[15( Mo — 0.7)])1%0
Om = Oom + O1m-|AC,|
3 T ™
= (=(-1.26-1. 15(My —0.7)]) — =[1 + 1.4M2])—
Tom (16( 6 — 1.53 arctan[15( 0.7)]) 2[ + °°])180
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am = 0.25+ 0.10AC2
VTm = 0.20 4+ 0.20AC?

E, = 0.01AC?

4.2.2 Greenbergs Quasisteady Model

The quasi-steady lift and moment expressions, derived from Greenberg’s theory, are

given as:
1 - . 1 .
L = §pS[7rb(Wo+§W1)+V(27rWO—|—27rW1)] (4.7)
1 - ™ 3T .
M = —pS2[—— — — - — :
2/05 b 1 4VW1 16W1)] (4.8)

4.3 Solution Procedure

The response of a 2-D airfoil undergoing pitching and plunging motion in a pulsating
flow is studied to bring out the effects of dynamic stall and aeroelastic couplings. In
evaluating the response of the airfoil, 4" order Runge-Kutta integration scheme with a
time step At = 0.00314 sec., has been used. The instantaneous lift and moment acting
on the airfoil are evaluated using Eqs. 4.2 - 4.4 and Eqs. 4.5 - 4.6, respectively. The
response of the airfoil is calculated iteratively till steady state solution is arrived. The
frequency contents of the response are obtained using Fast Fourier Transform (FFT).
The data used in the calculations are: m = 7.95 kg; I, = 0.115 kgm?; K}, = 4396.0
N/m; K4 = 734.2 Nm; and b = 0.209 m. Input pitch angle # and oncoming flow
velocity are assumed to be time varying and are represented by 6 = 12 — 6 cos(t)
deg. and V = 113(1 + 0.40 cos(Q2t)) m/sec respectively, where 2 is referred as input
excitation frequency and is given as ) = 22.82 rad/sec. (3.64Hz). The uncoupled
natural frequencies of the system are wy, = 3.74 Hz; wy = 12.72 Hz.

The results pertaining to aeroelastic response of a 2-D airfoil under going pitching

and plunging motion in pulsating oncoming flow are discussed in detail. The results of
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this study are presented in two sections. They are: (a) Uncoupled response (S, = 0),

and (b) Coupled response (Ss # 0).

4.3.1 TUncoupled Response

In the uncoupled analysis, the aerodynamic center, center of mass and elastic axis are
assumed to be located at the quarter chord point of a 2-D airfoil. The response of the
airfoil is obtained using two aerodynamic models, namely quasi-steady aerodynamic
model and modi fied stall model. Heave and torsional responses for quasi-steady aero-
dynamic theory and their frequency contents are plotted in Fig. 4.2a and Fig. 4.2b,
respectively. The response for modi fied stall model and their frequency contents are
plotted in Fig. 4.3a and Fig. 4.3b, respectively. From Fig. 4.2, it can be seen that
the heave response obtained from the quasi-steady aerodynamic theory contains two
frequencies, namely, 3.64 Hz and 7.27 Hz, whereas torsional response contains three
frequencies (3.64 Hz, 7.27 Hz and 10.90 Hz), which are integer multiples of excitation
frequency 3.64 Hz. For the case with modified dynamic stall model, (Fig. 4.3) while
the heave response contains two frequencies, pitch response has many frequencies.
Table 4.1 shows the frequency contents and their magnitude of the uncoupled heave
response for quasi-steady and modi fied stall aerodynamic theory. It is observed that
the amplitude of the heave response for the case of modi fied stall model is three times
greater than that for the quasi-steady model. In the case of torsional mode, modi fied
stall model introduces additional harmonics (Table 4.2), as compared to quasi-steady
aerodynamics. The reason for the appearance of additional higher harmonics may be
attributed to the nonlinearity of the stall model.

Lift and moment obtained from quasi-steady aerodynamics and modified stall
model are plotted for one cycle in Figs. 4.4a and 4.4b, respectively. The variation of
lift coefficient shows that the minimum occurs at 77 deg. for quasi-steady aerody-

namic theory and for mod: fied stall model, it is shifted to 95 deg. The peak value
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of the lift coefficient for dynamic stall is lower than that corresponding to quasi-
steady aerodynamics. The stall model also introduces additional harmonics in lift

and moment coeflicients.

4.3.2 Coupled Response

In the coupled analysis, heave-pitch coupling is introduced by shifting the mass centre
away from the elastic axis. Elastic axis and aerodynamic centre are located at quarter
chord point. The influence of aeroelastic coupling on the airfoil response has been
studied for various values of S, by shifting the mass centre aft and forward of elastic
axis.

Figures 4.5 - 4.10 show the response and frequency contents along with phase plane
diagram for the heaving and pitching motion of the airfoil for the various aft locations
of centre of mass from elastic axis, namely 3% (Sg = 0.049), 4% (Sy = 0.066) and 5%
(Sy = 0.083) of the chord. A comparison of these figures show that as the pitch-heave
coupling is increased (i.e., by shifting the centre of mass aft of elastic axis), pitch and
heave motions of airfoil become qualitatively different. Increasing the coupling seems
to increase the distribution of frequency contents in the response signal, as observed
in Figs. 4.5, 4.7 and 4.9. The phase plane diagrams (Figs. 4.6, 4.8 and 4.10) show
that as the coupling is increased, the motion of the airfoil changes from periodic to
bounded chaotic motion.

Table 4.3 shows the frequency distribution of the response and the magnitude, for
different cases of centre of mass location from elastic axis of the airfoil. It can be seen
that the uncoupled (0%) and the coupled (3% chord aft location of centre of mass
from elastic axis) have same frequency contents but having different magnitudes. The
frequencies correspond to the excitation frequency of the input 3.64 Hz and its higher
harmonics. When the centre of mass location is shifted to 4% chord aft of the elas-

tic axis, the airfoil response shows significant subharmonic (1.82 Hz which is half of
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input frequency 3.64 Hz) and super harmonic frequency contents. For the case of 5%
chord aft location of centre of mass from elastic axis, the response contains several
frequencies which are non-integer multiple of excitation frequency, both below and
above the excitation frequency. The magnitudes of these additional frequency con-
tents are comparable to the magnitudes of the response at input excitation frequency.
These results show that dynamic stall (nonlinear aerodynamics) in association with
aeroelastic pitch-heave coupling above a certain level can lead to bounded chaotic
motion of the airfoil. Further rearward shift of mass centre (about 7% of the chord),
leads the system to become completely unstable.

In order to verify whether the motion is truly chaotic or not, computations were
performed to study the effect of perturbation in initial condition on the steady state
response of the system. If the steady state response is sensitive to perturbation
in initial conditions, it represents chaotic motion [190] and the Liaponov exponent
provides a quantitative measure of the chaotic motion. The response of the airfoil is
evaluated for two different sets of initial conditions, namely (i) all initial conditions are
zero and (ii) perturbed initial condition with ¢(0) = 0.01 and other initial conditions
are set to zero. The magnitude of the difference in the response of the airfoil in pitch
(|2 — ¢1]) and heave (|hy — hy|) are plotted as functions of time. (Note: Subscript 1
represents the response corresponding to all zero initial conditions, whereas subscript
2 represents the case corresponding to perturbed initial condition.) If the steady state
response is independent of the perturbation in initial conditions (i.e., |p2 — ¢1|i00 =
0, |he — hilt500o = 0), then it indicates periodic response. On the other hand, if
the response is sensitive to perturbations in initial conditions, it represents chaotic
motion [190]. Figure 4.11 shows the sensitivity of the response to initial conditions
for two cases of centre of mass locations. It is evident that the system is insensitive
to initial condition for the two cases of centre of mass location, namely at 0% and 3%

chord aft of elastic axis, as shown in Figs. 4.11a and 4.11b, respectively. For the case
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of centre of mass location at 5% chord aft of elastic axis, the response of the system
is sensitive to the perturbation in initial condition as shown in Fig. 4.12(a). The
Liaponov exponent is obtained from the plots of ln|@| and In|22=21| versus time,
where 9 is the perturbation in initial condition. The positive slope of the mean curve
is defined as Liaponov exponent and it represents the sensitivity of the response
to perturbation in initial conditions. If the mean slope reaches a steady value, it
indicates a bounded chaotic motion. From Fig. 4.12(b), it can be seen that both
pitch and heave motion indicate bounded chaotic motion, with Liaponov exponents
1.78 for pitch and 1.48 for heave.

Figures 4.13 - 4.18 show the response and frequency contents along with phase
plane diagram for the heaving and pitching motion of the airfoil for the various forward
locations of centre of mass from elastic axis, namely 5% (Sy = 0.083), 10% (Sy =
0.166) and 20% (S, = 0.332) of the chord. Table 4.4 shows the frequency distribution
of the response and the magnitude, for different cases of centre of mass location from
elastic axis of the airfoil. From Figs. 4.13 - 4.18 and Table 4.4, it is evident that the
forward shift of mass centre always gives rise to a stable periodic response similar to

the uncoupled case.

4.4 Summary

Using the modi fied stall model, the response characteristics of a 2-D airfoil undergo-
ing pitching and plunging motion in a pulsating oncoming flow are analysed to study
the effects of dynamic stall. The results of this study show that significant difference
is observed in the response of airfoil for dynamic stall and quasi-steady aerodynamic
models. Dynamic stall in association with aeroelastic couplings above a certain level
leads to bounded chaotic motion of the airfoil, whereas such a phenomenon is not

observed with forward shift of mass centre.
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Table 4.1: Uncoupled heave response for quasi-steady and mod: fied stall aerodynamic
theory

quasi-steady Dynamic stall
Frequency  Magnitude Magnitude

(Hz) (m) (m)
3.64 0.23 0.77
7.27 0.05 0.11

Table 4.2: Uncoupled torsional response for quasi-steady and mod: fied stall aerody-
namic theory

Quasi-steady Dynamic stall
Frequency = Magnitude Magnitude

(Hz) (rad.) (rad.)
3.64 0.008 0.048
7.27 0.005 0.028
10.90 0.001 0.021
14.53 - 0.014
18.20 - 0.005
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Table 4.3: Frequency distribution of airfoil response with modified stall model and
aeroelastic coupling

Magnitude of heave response || Magnitude of torsional response
Frequency (m) (rad.)

(Hz) Aft location of C.G. from E.A. | Aft location of C.G. from E.A.
(0%) (%) (4%) (%) | (0%) (%) (%)  (6%)
0.40 - - - 0.063 - - - 0.009
1.59 - - - 0.260 - - - 0.013
1.82 - - 0.213 0.016 - - 0.019 0.002
1.89 - - . 0.063 - - - 0.003
2.18 - - 5 0.074 - - - 0.003
3.08 - f - 0.064 - - - 0.003
3.64%* 0.768 0.592 0.422  0.344 0.048 0.057 0.038 0.034
4.77 - - - 0.084 - - - 0.009
5.07 - - - 0.237 - - - 0.034
5.27 - - - 0.659 - - - 0.112
5.45 - - 0.533  0.143 - - 0.078 0.029
5.66 - - , 0.106 E - - 0.028
6.36 - - - 0.041 ] - - 0.017
7.27* 0.113 0.132 0.048  0.033 0.028 0.027 0.036 0.039
7.66 - - : 0.030 - - - 0.021
8.95 - - - 0.036 - - - 0.021
9.10 - - 0.058  0.023 - - 0.041 0.008
10.54 - - - 0.008 - - - 0.016
10.90* - 0.025 0.017  0.015 0.021 0.052 0.008 0.022
12.53 - - - 0.015 - - - 0.028
12.72 - - 0.015  0.007 - - 0.036 0.008
14.12 - - - 0.011 - - - 0.031
14.53* - 0.008 0.006  0.003 0.014 0.024 0.007 0.020
16.35 - - 0.004  0.002 - - 0.020 0.013
18.20* - - 0.004  0.003 0.005 0.022 0.003 0.005
19.98 - - - 0.002 - - 0.003 0.002

* indicates excitation frequency of the input ((3.64) Hz) and its higher harmonics.
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Table 4.4: Frequency distribution of airfoil response with modified stall model and
aeroelastic coupling

Magnitude of heave response

Magnitude of torsional response

Frequency (m) (rad.)

(Hz) Forward location of C.G. from E.A. | Forward location of C.G. from E.A.

(0%) (5%) (10%) (20%) 0%) (5%) (10%) (20%)
3.64%* 0.768 0.5 0.42 0.24 0.048 0.07 0.1 0.11
7.27* 0.113 0.1 0.05 0.025 0.028 0.067 0.04 0.04
10.90* - - - - 0.021 0.022 0.03 0.03
14.53* - - - - 0.014 0.012 0.016 0.018
18.20* - - - - 0.005 0.005 0.010 0.005

* indicates excitation frequency of the input ((3.64) Hz) and its higher harmonics.
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Figure 4.15: Airfoil response and its frequency contents generated with modified
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Figure 4.17: Airfoil response and its frequency contents generated with modified
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Chapter 5

HELICOPTER TRIM AND
ROTOR BLADE RESPONSE:
SOLUTION PROCEDURE

Helicopter trim and response calculation requires all the loads acting on the helicopter
system. The loads are due to (i) main rotor system (acting at the rotor hub), (ii)
fuselage aerodynamic load, (iii) tail rotor hub loads, (iv) horizontal tail and vertical
tail loads and (v) gravity effects. For the sake of clarity, a brief description of the

loads acting on various aerodynamic surfaces is given below.

5.1 Main Rotor

Evaluation of aerodynamic loads require the motion of the blade at every instant.
The blade response is evaluated in modal space in rotating system. The equations of

motion in modal space can be written as:
[M] {ii} + [C] {0} + [K] {n} = {F} (5.1)

where {F'} represents the generalized aerodynamic load acting on the blade.
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5.1.1 Inflow Model

The aerodynamic model requires evaluation of rotor inflow as a function of azimuth
and radial distance. In this thesis, three types of global inflow models, namely, steady
uniform inflow model, Drees model and dynamic wake model, are considered. A brief

mathematical description of these models is provided in the following.

(i) Uniform Inflow Model

In this model, the total inflow through the rotor disc is assumed a constant and is

given as:
Ay = ptanoa + A; (5.2)
where
T
L2/ (PR

(ii) Drees Model

In Drees model, the rotor inflow is a function of both azimuth and radial station. It

is given as:
A7, ) = ptana + X (1 + ky7siny + k7 cos ) (5.3)
where
ke =2p

4
ky, = g[(l — 1.84%) esc x — cot ]

where y wake skew angle and it is defined as x = tan™"(u/\,).
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(iii) Dynamic Wake Model (Peters-He Model, Ref. 19)

In this model, the total inflow is a function of azimuth, time and radial station. It is

given as:

APt ) = ptana+) > $(P)[ef(t)sin(py) + B () cos(py)]  (5.4)

p=0 j=p+1,p+3,...

where o and 7 (t) are evaluated by solving a set of differential equations.
’ Tec1— 1 mc
[M{a]} + [V][L] o} = o1} (5.5)

and
MY+ VT8 = ) (56)

In this thesis, a three term approximation (a?, «j and 35 ) has been considered.

5.1.2 Sectional Aerodynamic Loads

The sectional aerodynamic loads are evaluated by using either (i) quasi-steady ap-
proximation of Greenberg’s theory or (ii) modified ONERA dynamic stall model
applicable for both attached and separated flow. For the sake of clarity, a brief

mathematical description of these models is provided.

(i) Quasisteady Greenbergs Model

The quasi-steady approximation of Greenberg’s theory provides time variation of lift
and moment on an oscillating airfoil. The lift, moment and drag are assumed to be
acting at the quarter chord point and the expressions are given below.

Lift acting normal to the resultant flow:

1 - . . 1 -
L = §p5b[7rWo+gW1]+§pSV[27rW0+27rW1] (5.7)
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Unsteady moment on the airfoil is given as:
M= a5 Teriy — Ty — i (5.8)
I L R R T '
Drag acting along the resultant velocity:
L &2

where W, and W are defined as Wy = V(0 + h/V) and Wy = bf. The quantities
h, f and V represent the heaving velocity at the elastic axis, the pitch angle and the

oncoming velocity respectively.

(ii) Modified ONERA Dynamic Stall Model

The mod: fied dynamic stall model provides time variation of lift, moment and drag
on an oscillating airfoil. The stall model assumes that the lift, moment and drag are
acting at the quarter chord point. The unsteady lift acting normal to the resultant

velocity is given as:
T, )
L = §pS[is0 + kbWq + VI + VI (5.10)

where I'y, 'y are evaluated using the following equations

.. V.. 1% V ,0Cz Vv
Iy + BQ(F)P1 + B?,(z)Qr1 = Ag(g)z’ agLWO + A30(€)2W1
V. .0Czg .- V.o ..
+A2(€) agLWO + A2(3)0W1
+A1 ag;L WO + A10W1
. V. 174 1%4 Vo
[y + az(g)Fz + Tl(g)zrz = _[Tl(€)2VACZ|WO/V + El(g)Wo]

The unsteady moment on the airfoil is given as:
1 =~ . .
M = 3 pS26[V>Cra, lwoyv + (Om + dm)bWo + 0 VWi + $bW1 + VIino]5.11)
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where I',,5 is evaluated using the following equation.

V.. Vv Vv V. ..
Lo + am(?)FmQ + Tm(g)z)rm = —[Tm(g)wﬁcm\wo/v + Em(g)Wo]

The unsteady drag acting along the resultant velocity is given as:
1 - .
D= EPS[VQCdJWo/V + Ude() + Vrdg] (512)
where ["4, is evaluated using the following equation

Fd2 + ad(z)l“dg + rd(€)2l“d2 = —[T‘d(z)QVACC”WO/V + Ed(z)Wo]

where ACz|w, v, ACm|w, v , and ACd|yw,,y are the difference between the linear
static aerodynamic coefficient extrapolated to the stalled region to actual static aero-
dynamic coefficient of lift, moment and drag respectively, measured at an effective
angle of attack Wy/V. The quantities, Cp,, |w,/v and Cy, |w,,v are the static moment
and drag coefficients in linear regime measured at an effective angle of attack, Wy /V.
Figs. 5.1 - 5.3 provide the measured aerodynamic coefficients and the extrapolated
coefficients along with the definition of ACz|, ACm|, and ACd|. Since, the data is
given over 360 degs. angle of attack, this model can be used in reverse flow regions
involving large angles of attack.

Five different combinations of aerodynamic models have been proposed and the
influence of each one of these models on the trim and response characteristics of
helicopter rotor in forward flight is analysed systematically. The five aerodynamic

models are:

e quasi-steady aerodynamic theory (Egs. 5.7 - 5.9) combined with uniform

inflow model (Eq. 5.2) (QSUI),

e quasi-steady aerodynamic theory (Eqgs. 5.7 - 5.9) combined with Drees model
(Eq. 5.3) (QSDR),
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e quasi-steady aerodynamic theory (Eqs. 5.7 - 5.9) combined with dynamic
wake model (Eq. 5.4) (QSDW),

e modified ONERA stall model (Egs. 5.10 - 5.12) combined with Drees model
(Eq. 5.3) (DSDR); and

e modified ONERA stall model (Egs. 5.10 - 5.12) combined with dynamic wake
model (Eq. 5.4) (DSDW).

It may be noted that while describing the results only the abbreviations of the aero-
dynamic models are used for convenience.

The distributed inertia forces and moments per unit length can be obtained from
Eq. 2.28. Sectional aerodynamic loads are evaluated using either Eqs. 5.7 - 5.9 or
5.10 - 5.12. By summing up all the inertia and aerodynamic loads and integrating
over the length of the blade, one can obtain the root loads. The root loads of all four
rotor blades are added to obtain hubloads (H,Y, 7T, M,, M, and M,). Mean values of
the hub loads are represented by Hy, Yy, To, Myo, My and M.

5.1.3 Tail Rotor

The thrust generated by the tail rotor is derived using combined blade element and
momentum theory. The tail rotor thrust acts normal to the tail rotor plane and in a
direction providing compensation to the torque of the main rotor.

Tail rotor thrust is given by (Ref. [189]):
Tr = Cr|prR2(4R;) (5.13)

where the coefficient of tail rotor thrust Cy, is defined as:

ota OOT 3 2
= —[—(1 _

At
_ 5]
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and tail rotor inflow is given by

Cr,

At:ﬁ-
2/ 12 + X

5.1.4 Horizontal Tail

The horizontal tail is assumed to provide only aerodynamic lift. Lift is assumed as
a point load acting at the quarter chord of the horizontal tail. The lift on horizontal

tail is given as:
1 2
THT = ipShVHTthtght (514)
where s, is surface area and Vg is oncoming velocity, which is defined as:

UOR 11 < 0.05
Vur =
(v/ 12+ (1L.8XN)2)QR  p > 0.05 main rotor downwash effect is added

0y is angle of attack and it is taken as —2 deg.

5.1.5 Vertical Tail

Vertical tail is assumed to provide a side force due to its lift. The load on vertical

tail is obtained by using the static lift equation which is given below.
1 2
TVT = EIOSUVVTvatGT)t (515)

where s, is surface area and 6, is angle of attack and it is taken as 1.5 deg. The term

Vyr it is the oncoming velocity and is defined as:

Wr = pQR
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5.1.6 Fuselage Drag

Fuselage drag force is proportional to the square of the velocity and the frontal area.

Fuselage drag can be evaluated by using following expression.
L o
D = §pVFde (5.16)

where f is the equivalent frontal cross sectional area of the helicopter fuselage, C, is

drag coefficient taken as 1.0 and Vy is the oncoming velocity given as:

Figure 5.4 shows the loads and orientation of the helicopter in flight. Transfering
all the forces and moments due to main rotor, tail rotor, horizontal tail, vertical tail
and fuselage drag to centre of gravity (CG) of the helicopter and equating to the
components of the gravitational load, the equilibrium equations are obtained. In this
thesis, only steady level flight conditions are considered; and hence inertia effects due
to maneuver are not included. The force and moment equilibrium equations are given

as:

Hy+ Dcosaa = Wsin®cos®
Yo+Tr+Tyr = Wsin®
To+Tygr — Dsina = W cos® cos®
Mz — Yozmr + Toyur — (Trzrr + Tvrzve) + Turyur = 0.0
Myo — Toxmr + Hozmr — Tarzar = 0.0

My +Yoxmr — Hoymr + (Trxrr + Tyvrzyr) = 0.0 (5.17)

where © = o — Opp. Trim variables (6y, 01, 615, 0or, © and ®) can be obtained by

solving the above nonlinear algebraic equations (Eq. 5.17).
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5.2 Solution Procedure

The solution technique aims to obtain helicopter trim and blade response simulta-
neously by solving the three sets of equations in time domain, namely, (i) equations
representing the elastic deformations of the rotor blade (Eq. 5.1), (ii) equations rep-
resenting the inflow through the rotor disc (Eq. 5.2 or 5.3 or 5.4) and (iii) sectional
aerodynamic loads representing lift, drag and moment acting on the rotor blade (Egs.
5.7-5.9 or Egs. 5.10 - 5.12). For the aerodynamic models QSUI, QSDR and QSDW,
the sectional aerodynamic loads are represented by algebraic expressions given in Eqgs.
5.7-5.9. Whereas, for the aerodynamic models DSDR and DSDW, the sectional aero-
dynamic loads have to be obtained by solving a set of differential equations in time
domain given in Egs. 5.10 - 5.12. Similarly for the aerodynamic models involving
time varying inflow, i.e., QSDW and DSDW, the inflow variables (a?, «j and 3 )
have to be obtained by solving the set of differential equations given in Egs. 5.5 and
5.6. Of the five models used in this study, DSDW model is computationally more
intensive than the other models. In this model, the time varying inflow, sectional
aerodynamic loads and the blade response have to be solved by three sets of coupled
ordinary differential equations, at every time step. A description on the number of
variables for DSDW aerodynamic model is given in the following.

The aerodynamic loads acting on the blade are evaluated at 15 radial stations
(starting from 0.25R to 0.95R with an increment of 0.05R) for each blade. Hence,
there are in total 45 variables representing lift, drag and moment coefficients for one
blade. It may be noted (from Egs. 5.10-5.12) that there are four state variables
for lift, two state variables each for drag and moment. Therefore, the total number
of state variables representing the sectional aerodynamics for one blade is 120 (15
radial stations x 8 state variables per stations). The rotor blade structural model is
represented by eight modes consisting of four flap modes, two lag modes, one torsion

mode and one axial mode. Hence, the total number of state variables representing
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structural modes per blade is 16. The time varying inflow is given by three state
variables. Therefore, for a four bladed rotor system, there are in total 547 state
variables (480 aerodynamic state variables + 64 structural state variables + three
state variables for dynamic wake effects). In the present study, a four bladed system
with proper spacing in the azimuth angle is considered for the analysis. By solving
the response of all the blades simultaneously, one can identify the difference in the
response of the blades as they go around the azimuth. Since, the response and loads
of all the blades are solved at every instant of time, the time varying hub loads and

the time varying inflow (dynamic wake effects) can be captured.

5.2.1 Flow Chart and Algorithm

A propulsive trim procedure has been adopted to obtain the main rotor control angles,
tail rotor collective angle, fuselage roll and pitch attitudes. A fourth order Runge-
Kutta integration scheme with a time step At = 0.0025 sec., has been used for
solving the differential equations. Flow chart for calculation of helicopter trim and
rotor response is shown in the Fig. 5.5. The steps involved in the evaluation of trim
and response using DSDW model (which is computationally intensive as compared
to other four models) are described below. These steps get simplified appropriately
while using the other four models, namely, QSUI, QSDR, QSDW and DSDR.

1. For a given data including flight condition, evaluate mean rotor inflow based on

all-up weight.

2. Assume initial values for trim variables (g, 61,015,007, © and ®) and initial

conditions for blade response.

3. Knowing rotor inflow and blade response and obtain the sectional aerodynamic

loads for all the blades, by solving the dynamic stall equations.

4. Then using the sectional blade loads, the response of individual blades and rotor
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inflow variables are obtained simultaneously for the next time step, using blade

equations and dynamic wake equations respectively.

5. Next, by using the blade response and inflow, go to step 3. This iteration
is performed for about 40-50 rotor revolutions till convergence in the blade

response and inflow variables are obtained.

6. Using the converged blade response, the blade root loads and hub loads are

obtained.

7. Then transfer the mean values of rotor hub loads, loads from horizontal tail,
vertical tail, tail rotor and fuselage to the CG to satisfy the trim equations (Eq.
5.17).

8. Evaluate improved trim variables using Newton-Raphson technique.

9. Go to step 2. The iterations are continued till convergence in trim variables
achieved. The convergence criterion is based on satisfying the condition that
the difference in each trim setting between two successive iterations must be

less than 0.002%.

5.3 Summary

In this chapter, the consolidated set of equations representing blade dynamics, ro-
tor inflow and sectional aerodynamics are presented. Five different combinations of
aerodynamic models have been proposed. The complete set of trim equations are
provided. The iterative computational solution technique developed for trim and

response analysis is described.
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Chapter 6

HELICOPTER TRIM AND
ROTOR BLADE RESPONSE:
RESULTS AND DISCUSSION

6.1 Introduction

Using the solution technique described in Chapter 5, helicopter trim and aeroelastic
response of the rotor blades are analysed for different cases to bring out: (i) the
effect of aerodynamic modeling and (ii) the influence of structural couplings due to
blade pretwist. Two sets of results are presented in the following. One set of results
pertains to untwisted straight blade and the other set of results corresponds to a
pretwisted blade configuration. Even though the response of all the blades in the
rotor system is evaluated independently, for conciseness, in the description of the
results only the response and loads of blade-1 (reference blade) are presented. The
geometric description of the helicopter is shown in Fig. 6.1. The main rotor blade is
modeled as a soft-in plane hingeless rotor blade with eight elastic modes representing
four flap, two lag, one torsion and one axial modes. The rotor system consists of four

blades. The data used in the present study are given in Tables 6.1 and 6.2.
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6.1.1 Untwisted Straight Blade

Using the five different aerodynamic models (QSUI, QSDR, QSDW, DSDR and
DSDW), helicopter trim and blade response are evaluated for different forward speed
conditions. The variation of control angles (6y, 01, 015, 0or) and the fuselage attitude
in pitch (© ) and roll ( ®) with forward speed are shown in Fig. 6.2. From Fig.
6.2a, it can be seen that the magnitude of the collective pitch angle () is affected
by the aerodynamic models used in the analysis. However, at high forward speeds
(1 > 0.25), the aerodynamic models do not significantly influence the collective pitch
angle. It is observed that the models with dynamic wake (QSDW and DSDW) re-
quire high collective pitch setting at low forward speeds than the other aerodynamic
models. For hover, the variation in the collective pitch angle for all these models is
of the order 0.75 deg. A similar observation can be made for the tail rotor collective
pitch (6yr) as shown in Fig. 6.2d.

The variation of the lateral cyclic control angle (6;.) with forward speed is shown
in Fig. 6.2b. From the figure, it can be seen that inclusion of Drees model with
quasi-steady aerodynamics (QSDR) increases the control angle in the transition zone
(i.e., in the range p = 0.05 to 0.075). The increase is more pronounced if dynamic
wake model is used (QSDW) instead of Drees model. In this transition zone, dynamic
stall model has very little effect but as p increases dynamic stall model shows more
reduction in control angle as compared to quasi-steady aerodynamics. This type of
sharp rise and fall in the variation of 6;. obtained with DSDW model qualitatively
resembles the flight data presented in Ref. [191] (shown in Fig. 6.3). Dynamic stall
models require more longitudinal cyclic control angle (615) at high forward speeds as
can be seen in Fig. 6.2c. The equilibrium roll angle of the helicopter (as observed in
Fig. 6.2e) is larger for QSUI model as compared to other four aerodynamic models.
The equilibrium roll angle is the least for the two dynamic wake models DSDW and

QSDW:; and the roll angles are found to be almost the same for these two models. It
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is interesting to note from Fig. 6.2f that the pitch attitude of the helicopter shows a
monotonic increase with forward speed; but at high forward speeds there is a slight
reduction in the pitch angle for the two dynamic stall models DSDR and DSDW.

The reason for the observed sharp rise and fall in lateral cyclic control angle as
shown in Fig. 6.2b, can be explained by analyzing the inflow variables. For the
sake of comparison, a new set of common inflow parameters Ay, A\;. and A;; has
been introduced. In Drees model, these parameters denote Ao = A, A1 = A\iky and
Ais = Aikg. In the dynamic wake model, the parameters are equal to Ay = /3 a?,
Me = 1/15/2 o} and M\ = /15/2 B}. Figure 6.4 shows the variation of inflow
variables for DSDR and DSDW models, in the transition zone (u = 0.075). The
collective inflow ()\g) predicted by the two models are close to each other and it
is around 0.04. The lateral variation of inflow (A5) is one order smaller than the
longitudinal (A;.) and collective inflow quantities. Dynamic wake model (DSDW)
predicts the longitudinal inflow as A;. = 0.055, which is much higher than that
predicted by Drees model DSDR (A;,=0.03). Because of the high value of A, a high
value of 6. is required for equilibrium with DSDW model as compared to DSDR
model. The inflow variables at high forward speed (u = 0.3) are shown in Fig. 6.5
for DSDR and DSDW models. The collective inflow Ay predicted by the two models
are almost equal and it is around 0.01. Lateral variation of inflow A, is one order
smaller than A\g and A{.. The inflow variable ). is reduced as compared to the values
obtained for p = 0.075. Because of the reduction in the value of A;. at high forward
speeds, the lateral cyclic control angle also shows a reduction at high speeds as can
be seen in Fig. 6.2b.

The variation of sectional aerodynamic loads and tip response of the rotor blades as
a function of azimuth are evaluated using all the five aerodynamic models. Sectional
aerodynamic loads at various radial stations are shown in Figs. 6.6 - 6.10. Sectional

aerodynamic lift, moment and drag at 50%R are shown respectively in Figs. 6.6a -
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6.6¢, for one blade as it goes around the azimuth, for an advance ratio ;4 = 0.35. From
Fig. 6.6a, it can be seen that the minimum value of the sectional lift force is different
in both advancing and retreating sides for quasi-steady aerodynamic model to that
of dynamic stall model. Figure 6.6b shows that dynamic stall models (DSDR and
DSDW) increase the variation in drag force particularly in the azimuth location 200 <
1 < 340 deg. From Fig. 6.6¢c, it is observed that the sectional moment shows large
variation in amplitude with dynamic stall models (DSDR and DSDW) as compared to
quasi-steady aerodynamic models (QSUI, QSDR and QSDW). For the radial station
65%R (Fig. 6.7), it can be seen that lift variation is not significantly influenced by
aerodynamic modeling (Fig. 6.7a); however, sectional drag force shows considerable
variation with respect to aerodynamic modeling (Fig. 6.7b); and torsional moment
is significantly affected by dynamic stall models (Fig. 6.7c). Figure 6.8 shows the
sectional lift, drag and moment at radial station 75%R. The variation of sectional
lift (Fig. 6.8a) shows that the phase angle at which the minimum lift occurs in
the advancing side, for the five aerodynamic models is: 1 = 99 deg. for QSUI
and QSDR model, v =105 deg. for QSDW model and ¢ = 111 deg. for DSDR and
DSDW model. This result indicates that inclusion of dynamic stall shifts the azimuth
angle to a higher value in the advancing side. This observation on the occurence of
minimum lift near ¢ = 115 deg. is consistent with the flight test data presented
in Ref. [176]. In the retreating side dynamic stall models (DSDR and DSDW) give
a slightly higher lift force than quasi-steady models. In the case of sectional drag
force (Fig. 6.8b), all the five models predict similar variation with azimuth except
for the DSDR model in the azimuth range 300 < 3 < 360 deg. From Fig. 6.8c, it
can be seen that dynamic stall models provide a large variation in sectional moment
compared to the other three aerodynamic models. However, in the azimuth range
300 < ¥ < 360 deg. DSDR model predicts a large value of nose-down moment

compared to DSDW model. Sectional aerodynamic loads at 85%R and 95%R are

143



shown in Figs. 6.9 and 6.10, respectively. From Figs. 6.9a and 6.10a, it can be
seen that the minimum value of the sectional lift force is almost the same in both
advancing and retreating sides for those cases with dynamic stall models (DSDR and
DSDW); but it is different for the quasi-steady aerodynamic models (QSUI, QSDR
and QSDW). From Figs. 6.9b and 6.10b, it is observed that the sectional drag shows
a large variation in retreating side (240 < ¥ < 360 deg.) for dynamic stall models
as compared to quasi-steady aerodynamic models. Figures 6.9c and 6.10c show that
dynamic stall models introduce a large variation in torsional moment as compared to
quasi-steady aerodynamic models.

Figure 6.11 shows the tip response of the blade in flap, lag and torsional modes
in 4K-system. It can be seen that dynamic stall models have a moderate influence
on the flap response (Fig. 6.11a); and increases the lag response over the azimuth
except in the range 140 < b < 190 deg. (Fig. 6.11b). It may be noted that the lag
response is having a positive value in the 4 K-system. If the flap and lag deformations
are converted in the hub fixed rotating 1 K-system, the lag response will be a negative
quantity. The torsional response of the blade significantly increases due to dynamic
stall effects, as evident from Fig. 6.11c. The dynamic stall also introduces additional
harmonics in the torsional response of the blade.

The variation of hub loads over one revolution is shown in the Fig. 6.12. For the
sake of clarity, only the results pertaining to quasi-steady and uniform inflow (QSUTI)
model and more sophisticated dynamic stall and dynamic wake (DSDW) model, for
an advance ratio 4 = 0.35 are discussed. Response of hub loads (longitudinal force
(H), lateral force (Y), thrust (T), roll (Mx), pitch (My) and yaw (Mz) moments) are
shown in Fig. 6.12. It can be seen that the mean values of longitudinal force (H) (Fig.
6.12a), lateral force (Y) (Fig. 6.12b) and roll moment (Mx) (Fig. 6.12d) differ by
a significant amount for the two aerodynamic models. Thrust variation (Fig. 6.12¢)

shows that DSDW model introduces a large variation in the loads. It is observed that
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DSDW model increases the magnitude of all the force and moment components of
the hub loads.

A comparison of the frequency contents and their magnitudes of all the hub loads
for QSUI and DSDW models are shown in Figs. 6.13 - 6.18. From these figures, it
is observed that the magnitudes of the various harmonics of all the hub loads cor-
responding to DSDW model are larger than those obtained by QSUI model. The
difference in the magnitudes is significant in the case of longitudinal force (H), lateral
force (Y) and thrust (T) variation as shown in Figs. 6.13a, 6.14a and 6.15a, respec-
tively. In the case of thrust (T) (Fig. 6.15a), it is observed that the amplitude of the
4/rev frequency (20 Hz) is around 810 N for DSDW model and it is only about 100 N
for QSUI model. The enlarged figures (Figs. 6.13b - 6.18b) show that DSDW model
provides a large number of harmonics including those below 20 Hz (4/rev) in all the
hub loads. From these figures, it is interesting to note that even QSUI model predicts
the presence of frequencies below 20 Hz (4/rev). This observation on the presence of
a wide spectrum of frequencies in the hub loads is mainly due to the nonlinearity and
the asymmetry associated with the aerodynamic models.

For the sake of comparison, the vertical shear force at the root of all the four
blades as a function of azimuth is shown in Fig. 6.19. From the figure, it can be
seen that the response of all the blades is almost identical. The frequency contents
of the response are given in Table 6.3. It is evident that the magnitudes of frequency
contents are slightly different for all the four blades. This difference in the magnitudes
of the harmonic contents is responsible for the appearence of all harmonics in the hub
loads including those corresponding to blade passage frequency N,/rev and its integer

multiples.
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6.1.2 Effect of Forward Speed: Straight Blade Configuration

Using DSDW aerodynamic model, sectional aerodynamic loads at various radial sta-
tions, blade root loads and hub loads are evaluated for different forward speed con-
ditions. The variation of sectional lift, drag and moment versus azimuth angle are
shown in Figs. 6.20 - 6.22. From Fig. 6.20, it can be seen that the magnitudes of the
sectional lift is affected by the forward speed. At low forward speeds (0 < p < 0.1),
sectional lift exhibits one/rev variation with small amplitude. Whereas, high forward
speeds introduce large variation in the sectional lift with additional harmonics. One
interesting observation from Figs. 6.20a - 6.20e is that the occurrence of minimum
value of the sectional lift force in the forward speed range 0.2 < p < 0.3, shifts from
retreating side to advancing side as the radial station moves from in-board towards
the tip. Whereas for . = 0.35, the minimum value of the sectional lift is almost the
same in both advancing and retreating sides. The reason for this phenomenon can be
attributed to stall in the retreating side.

Figures 6.21 and 6.22 show respectively the variation of sectional drag and moment
at different radial stations. With inerease in forward speed, sectional drag shows large
variation in all radial stations. For the high forward speed p = 0.35, the sectional
drag (Fig. 6.21) shows a large increase near the tip region (85%R and 95%R) in
the retreating side (230 < ¥ < 360 deg.) due to dynamic stall effects. A similar
observation is also seen in the case of sectional torsional moment as shown in Fig.
6.22.

For the reference blade (blade-1), the variation of root loads and root moments
with azimuth angle are shown in Figs. 6.23 and 6.24, respectively. As the forward
speed increases, the amplitude of root forces and moments increase substantially.

The variation of hub forces and moments over one revolution of the rotor is shown
in Figs. 6.25 and 6.26, respectively. The variations of loads show dominant 4/rev

oscillatory component with increase in forward speed.
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Figure 6.27 shows the tip response of the blade in flap, lag and torsional modes. In
all the modes, the tip response shows a monotonic increase with increase in forward
speed. For the forward speed pu = 0.35, additional harmonics are introduced in

torsional response due to dynamic stall effects.

6.1.3 Effect of Structural Coupling due to Pretwist

The rotor blade is assumed to have a linear pretwist of -8 deg. It may be noted that
for this blade configuration, if the control pitch input is zero, then the root pitch angle
of the blade is 12 deg. and the tip pitch angle is 4 deg.. The purpose of this study is
to analyse the effects of the structural coupling due to pretwist on the helicopter trim
and aeroelastic response of the rotor blade and hub loads. The aeroelastic analysis is
performed using the DSDW aerodynamic model. In the following, a comparison of
trim and response results for straight and twisted blades, is presented.

The variation of control angles (6, 61,015, 0or) and the fuselage attitude in pitch
(©) and roll (®) with forward speed are shown in Fig. 6.28. The trend of all the
control angles is similar for both cases of straight and twisted blade configurations.
From Fig. 6.28a, it is evident that the magnitude of the collective pitch angle (6p) is
low in the case of twisted blade as compared to the straight blade. The difference of
about 6 deg. in collective pitch essentially corresponds to the pitch of the pretwisted
blade at 75% radial location. The observed dip in the fuselage pitch attitude at the
high advance ratio for the straight blade configuration is eliminated in the case of the
twisted blade configuration (Fig. 6.28f).

The variation of hub loads for one revolution is shown in Fig. 6.29 for the two
cases of straight and pretwisted configurations, for an advance ratio p = 0.35. It can
be seen that the mean values of longitudinal force (H) (Fig. 6.29(a)), lateral force (Y)
(Fig. 6.29(b)) and yawing moment (Mz) (Fig. 6.29(f)) differ by a significant amount

for the two configurations. Whereas, the mean values remain almost the same for
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thrust (T) (Fig. 6.29(c)), roll moment (Mx) (Fig. 6.29(d)) and pitch moment (My)
(Fig. 6.29(e)). It is observed that blade pretwist reduces the amplitude of hub
load variations. This observation can also be seen by comparing the magnitudes of
harmonic contents in thrust (T), shown in Fig. 6.15 (for straight blade configuration
with DSDW model) and Fig. 6.30 (for twisted blade configuration with DSDW
model). It can be seen from Fig. 6.30 that the magnitudes of the various harmonics
corresponding to pretwisted blade are smaller than those obtained for straight blade.
The amplitude of 4/rev frequency (20 Hz) is found to be 650 N for the pretwisted
blade and for the straight blade the value is 810 N.

Sectional aerodynamic lift, moment and drag at various radial stations (50%R,
65%R, 7T5%R, 85%R and 95%R) are shown respectively in Figs. 6.31-6.33, for one
blade as it goes around the azimuth, for an advance ratio p = 0.35. From Fig. 6.31, it
can be seen that for the case of straight blade configuration, the minimum value of the
sectional lift force is almost the same in both advancing and retreating sides at all the
radial stations. Whereas, for the case of twisted blade configuration, the occurrence of
minimum value of the sectional lift force shifts from retreating side to advancing side
as the radial station moves towards the tip. From Fig. 6.32, it is observed that the
sectional moment shows identical variation at in-board sections (50%R and 65%R) for
both twisted and straight blade configurations. At the out-board stations (85%R and
95%R), the sectional moment undergoes a large variation in the retreating side for the
straight blade as compared to the twisted blade configuration. From Fig. 6.33, it is
observed that at the out-board stations (85%R and 95%R), the variation in sectional
drag force is considerably small for the twisted blade configuration as compared to
straight blade configuration. These results show that the effect of dynamic stall is
reduced in the retreating side due to blade pretwist.

The tip response of a single blade in flap, lag and torsional modes is shown in Fig.

6.34. The magnitude of the variation of the tip response is relatively small for the
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case of twisted blade configuration as compared to the straight blade configuration.
Figure 6.34 shows that the torsional response has more harmonics as compared to
flap and lag response.

The variation of root loads for a single blade as it goes around the azimuth is
shown in Fig. 6.35. From the figure, it can be seen that there is a reduction in the
magnitudes of the root loads for the case of twisted blade configuration as compared

to the straight blade configuration.

6.1.4 Effect of Forward Speed: Twisted Blade Configuration

For the sake of completeness, sectional aerodynamic loads, hub loads, root loads and
tip response are evaluated for different forward speed conditions using DSDW model
for twisted blade configuration. The variation of sectional lift, drag and moment with
respect to azimuth angle are shown in Figs. 6.36 - 6.38. Comparing these figures
with those shown in Figs. 6.20 - 6.22 for a straight blade configuration, it can be
seen that for the case of twisted blade configuration, (i) the magnitudes of lift, drag
and moment at 85 %R and 95 %R are reduced; and (ii) also the effect of stall in the
retreating side is reduced.

The variation of root loads and root moments with azimuth angle are shown in
Figs. 6.39 and 6.40 respectively. The variation of hub forces are shown in Fig. 6.41
and the variation of hub moments w.r.t. azimuth angle is shown in Fig. 6.42. Figure
6.43 shows the flap-lag-torsion response of the blade tip. From these figures, it is
evident that the increase in forward speed increases the magnitude of loads and blade
response. Comparing these results with those corresponding to the straight blade
configuration, it is observed that the nature of variation of the response with increase

in forward speed is almost similar for both blade configurations.
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6.2 Summary

A systematic study is undertaken to analyse the influence of various aerodynamic
models, representing rotor inflow and sectional loads, on the helicopter trim and
aeroelastic response of the rotor blades. The influence of blade pretwist on rotor

loads and response is also studied.
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Table 6.1: Helicopter data

Variable Quantity
Number of blades, Ny 4
Air density at sea level, p (kg/m?) 1.224
Weight of the Helicopter, W (N) 45000
Radius of the main rotor blade, R (m) 6.6
Radius of the tail rotor blade,  R; (m) 1.3
Chord of the main rotor blade, C (m) 0.5
Chord of the tail rotor blade, Cy (m) 0.19
Main rotor rotating speed, Q (rpm) 300
Tail rotor rotating speed, Qy (rpm) 1500
Fuselage frontal area, f (m?) 1.8
Horizontal tail area, sp (m?) 2.24
Vertical tail area, 8y (m?) 2.126
Blade Frequency data (Untwisted): Nondimensional
Flap modes 1.089
2.896
5.145
7.688
Lag modes 0.701
5.308
Torsional mode 4.509
Axial mode 9.155
Blade Frequency data (Twisted): Nondimensional
Flap modes 1.093
2.822
4.865
7.150
Lag modes 0.701
5.293
Torsional mode 4.508
Axial mode 9.155
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Table 6.2: Geometrical data of the helicopter

Variable Quantity (m)
Xur 0.0
Xyrp 7.5
Xvr 7.5
X W5
Yvr 0.0
Yur 0.0
Yvr 0.0
Yrr 0.0
P 2.0
Zur 0.5
Zyr 1.75
T 2.0
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Table 6.3: Frequency contents of blade root shear (Fzy)

Frequency | 15'blade | 2™¢blade | 3"%blade | 4"blade
(Hz)
) 1633.90 | 1630.10 | 1630.20 | 1629.90
10 3518.80 | 3522.10 | 3522.40 | 3522.80
15 725.59 725.25 725.81 725.59
20 200.85 200.27 199.90 199.95
25 54.86 54.48 54.65 54.63
30 19.14 20.21 20.13 21.00
35 15.10 14.31 14.16 14.24
40 16.09 14.95 15.08 15.07
45 13.43 12.31 12.39 12.33
50 14.81 13.89 13.85 13.78
59 14.63 13.64 13.74 13.69
60 14.92 13.98 13.95 13.95
65 15.12 14.14 14.08 14.12
70 13.75 12.77 12.81 12.86
75 13.01 12.18 12.11 12.15
80 12.95 11.99 12.02 12.03
85 12.37 11.47 11.52 11.48
90 10.44 9.63 9.61 9.57
95 8.75 7.88 7.95 7.92
100 8.96 8.21 8.19 8.20
105 9.70 9.00 8.96 8.98
110 8.66 7.90 7.93 7.96
115 6.51 5.81 5.76 5.79
120 6.13 5.54 5.55 5.5
125 7.7 7.23 7.28 7.26
130 19.14 20.21 20.13 21.00
135 5.74 5.05 5.10 5.08
140 4.16 3.62 3.60 3.60
145 5.41 4.97 4.94 4.96
150 5.85 5.32 5.33 5.36
155 4.43 3.96 3.92 3.92
160 2.58 1.99 2.05 2.04
165 2.27 1.81 1.83 1.81
170 2.49 2.07 2.07 2.06
175 2.03 1.65 1.65 1.66
180 1.27 1.07 1.05 1.05
185 0.67 0.66 0.69 0.67
190 0.33 0.59 0.58 0.56
195 0.15 0.53 0.55 0.55
200 0.09 0.61 0.55 0.55
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Figure 6.24: Blade root moments for various forward speeds
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Figure 6.26: Hub moments for various forward speeds
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Figure 6.34: Comparison of tip deformations of the rotor blade for twisted and straight
blade configurations as a function of azimuth for p = 0.35 obtained using DSDW
model
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Figure 6.36: Variation of sectional aerodynamic lift for different forward speeds
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Figure 6.37: Variation of sectional aerodynamic drag for different forward speeds
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Figure 6.38: Variation of sectional aerodynamic moment for different forward speeds
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Figure 6.39: Blade root forces for various forward speeds
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Figure 6.40: Blade root moments for various forward speeds

192



IS0 270 360
Nondim. time, Nondim. time, v

(a) (b)

o
)
1

©=0.0
......... ©=0.05
—————— ©=0.075
.................. $1=0.20
_________ 1=0.25
SE——— ©=0.30

090 180 270 360
Nondim. time, ¢ —_— ©=0.35

(c)

Figure 6.41: Hub forces for various forward speeds
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Figure 6.43: Tip response for various forward speeds
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Chapter 7

CONCLUSIONS

Flight test data of helicopters indicate that vibratory levels in the fuselage exhibit
a wide spectrum of frequencies including the dominant blade passage frequency and
its integer multiples. The present work attempts to understand the reason for the
existence of several frequencies in the response of the fuselage and possible cause
for this observed phenomenon by formulating a computational aeroelastic model. In
this thesis, dynamic stall and dynamic wake effects are incorporated in a coupled
aeroelastic analysis to investigate blade sectional loads, hub loads and trim condition
of the helicopter. The differential equations of motion are solved in time domain
in a sequential manner to obtain the response of all the blades in the rotor system,
the inflow variables, and the sectional loads at every time step. The influence of
aerodynamic modeling on the trim condition and aeroelastic response of the rotor
blade in forward flight has been brought out. The results of the study are presented
in two major sections.

The first part of the work addresses a detailed study of the ONERA (EDLin)
dynamic stall model. Based on this study, an improved ONERA dynamic stall model
has been proposed. The response charasteristics of a 2-D airfoil undergoing pitching
and plunging motion in a time varying oncoming flow, simulating the dynamics of a

typical section of a rotor blade in forward flight are analysed.
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The important observations of this study can be summarised as:

1. ONERA (EDLin) dynamic stall model has been analysed in relation to Theodorsen’s

and Greenberg’s unsteady aerodynamic theory. It is shown that ONERA (EDLin)
dynamic stall model in the unstalled region is identical to Theodorsen’s model
except that the lift deficiency function C(k) is approximated by a first order
rational approximation. Replacing first order rational approximation by more
accurate second order rational approximation, a modi fied dynamic stall model
is proposed. This improved stall model is shown to provide a better correlation

with experimental stall data.

2. Using the mod:i fied stall model, the response characteristics of a 2-D airfoil un-
dergoing pitching and plunging motion in a pulsating oncoming flow are anal-
ysed to study the effects of dynamic stall. The results of this study show that
the dynamic stall in association with aeroelastic couplings above a certain level

leads to bounded chaotic motion of the airfoil.

In the second part of the thesis, a computational aeroelastic model has been
developed, wherein the equations representing the blade dynamics, rotor inflow and
sectional aerodynamics including stall are solved in a sequential manner. A four
bladed system with proper spacing in the azimuth angle has been considered for the
analysis. By solving simultaneously the response of all the blades, one can identify
the difference in the response of the blades as they go around the azimuth. Since
the response and loads of all the blades are solved at every instant of time, the time
varying hub loads and time varying inflow (dynamic wake effects) can be captured. A
systematic study is undertaken to analyse the influence of five different aerodynamic
models, representing rotor inflow and sectional aerodynamic loads, on the helicopter
trim and aeroelastic response of the rotor blades. The influence of blade pretwist on

rotor loads and response has also been studied.
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The important observations of this study can be summarised as:

1. The lateral cyclic pitch (6;.) setting required for trim is significantly affected
by rotor inflow at low forward speeds (0 < p < 0.1), and by dynamic stall
effects at forward speeds (u > 0.15). It is also found that the aerodynamic
model, incorporating dynamic wake and dynamic stall effects, predicts the trim
parameter (f;.) whose variation with forward speed resembles closely to those

obtained in flight test.

2. At low forward speeds (0 < p < 0.1), the sectional lift at various cross-sections
of the blade, exhibits one/rev variation with small amplitude. Whereas, high
forward speeds introduce large variation in the sectional lift with additional

harmonics.

3. At high forward speeds, the azimuthal location in the advancing side where the

minimum value of the sectional lift occurs, is influenced by dynamic stall effects.

4. At high forward speeds, dynamic stall effects significantly increase the torsional

response of the rotor blade.

5. The results of this study clearly show that dynamic stall and dynamic wake
model introduces large number of harmonics in the hub loads, including those

below the blade passage frequency and its integer multiples.

6. The structural coupling due to blade pretwist is observed to significantly alter
the time variation of the sectional loads as compared to the loads obtained for
a straight untwisted blade. This result indicates that aeroelastic couplings have

a significant influence on the rotor loads.
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Appendix A

%
Components of 'r_p>, W and Vi

Position vector at a point ‘p’ is given as:
Lo o = R [T:vew4k sl Ty€yak N Tzez4k]

where
n—1
ry = {—a(Bscosbr + Bysinfr) + e + e + Z(le)i + cos Agcos Ay (g + uy)
+ v sin Ay cos Ay — wy sinA, + n(—vf:z)s A cos A, cos(Og + d)
— wy, cos Ay cos Ay sin(fg + @) + sin Ay cos A, cos(0g + @) — sin A, sin(g + ¢y))
+ (v, cos A cos Ag sin(0g + ¢r) — wy, cos Ag cos A, cos(0g + dy,)
— sin A cos Ay sin(0g + ¢r) — sin A, cos(fg + ¢r))}
ry = {acosOr+ (e1 + e3)(Bscos b + Bysinfr) — sin Ag(x + ug) + vj cos Ag
+ n(v, sin Ay cos(0g + ¢r) + w, sin Agsin(0g + @) + cos A; cos(8g + dx))
+ ((—v, sin Agsin(0g + ¢x) + wy, sin A cos(0g + ¢x) — cos Agsin(fg + éx))}
r, = {—asinfr + (e; + e2)(Bssin Oy — By cosOr) + sin A, cos Ag(zy, + ug) + v sin Agsin A,
+ wy, cos Ay + n(—vj, cos Agsin A, cos(0g + @) — wy, cos Agsin A, sin(fg + o)
+ sin Ay sin A, cos(0g + @) + cos Ay sin(fg + o)) + (v, cos Agsin A, sin(0g + dx)

— w), cos Ay sin A, cos(fg + dx) — sin Agsin A, sin(fg + ¢x) + cos Ay cos(0g + éx))}
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Angular velocity is given as:
ﬁ = Q [wzéw4k + wyéyélk + wzéz4k]
where

wy = ((Bacosb; — Bssinby) + 0, cos vy, + Hy sin )y, + éz(ﬁd cosfr — Bssinfy) + 01)
wy = (sinfr — 0, sin 1y, cos 0f + éy cos g cos O + 6, sin O + é;(ﬁs cos O + Bysinfr))

w, = (cosb;+ 0, sin 1y sin 07 — éy cos Yy, sin O + 0, cosO; + 91(53 sinf; — By cosfr))
Velocity due to hub perturbations is given below:

=7 d % R

Ve = QR [VHw ek + Vi, Cya + Vi, €z4k]
where

Vi, = (Rg(cosvy + sinthy(B;cos b + Bysinéy))

+ Ry (sin vy — cos U (B cos By + Bysinby)) + R,(Bycos O — By sin ;)
Vi, = (Rx(cos i (Bs cos O + By sinOr) — sin 1y cos b;)

+ Ry (cos 4y, cos O + sin (B, cos 0 + Bysin b)) + R, (sin 6;))

Ve, = (Rg(costy(Bssinf; — By cosbp) + sin 1y sin 0;)

+ Ry (sin (B, sin Oy — By cos f) — cosy sin O;) + R, (cos 0r))
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Appendix B

Matrices associated with Kkinetic

energy

Mass Matrix [M], ., :

(My] = /0 C(m{® YT + (I cos* (B +68) + Ly sin (8 + ox)

— Incsin 2(0 + ) {2 H DL} ) d

Mia] = [ (50 =) sin2(0 +60) + g 0520606 + ){BHEY o

[Mis3] = /0 E — (MmN sin(0 + ¢r) + MG cos(0g + é5)){P}H{ Py} d
[M] = /0 " — (1 c08(6 + 6x) — MG sin (6 + PRI PH D} d
(Ml = [ () e~ L) sin2(B -+ 6u) + Iy cos (8 -+ 6u)) {0} o

[My] = /0 e (m{® P} + (Iee sin® (B + @) + Iny cos® (B + ¢r)
+ Ly sin 2(0g + ¢x)) {®LH DL} ) dx

Vsl = [ ol + 80) = mGsin(0 + 60) @) (9
Vil = [ sin0 + 60+ mG os(l + 60) (2 () s
M) = / (M 100 + B1) + MG c05(0 + 1)) {0, H @} da
My = / Ml 050 + B1) — M $in(0 + 1)) {8} B} T
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(M) = / (i + 1) (@O da
[M34] - 00

[(Mu] = /0 (€080 + G) — MG sin(0 + 1)) {2} {8} da

[Mi] = /0 = (50 (0 + 88) + MG c05(0 + 01)) {BH B da
[M43] = 00

M) = / " { @, }{®,) dx

Damping Matrix [MC] uxia

(M) = /Ole 2[— (i, c0s(0 + Px) — MG 5i0(06 + bx)) cos(0r){PH B}
+ (M €080 + $) = MG 50 (0 + b)) cos(Or){ P H S} d
[M5] = /Ole 2[—m(B, + 01 + Ba cos(207)){ P H{ P} "
— (M SN0 + 1) + M c08(0 + 1)) cos(01){ D H P}
— (M, c08(8 + i) — MG sin(fg + o)) sin(Or) { S H 8} dz

[Mg] = /0 ) 2[—9}(m77m cos(Og + ¢) — mpsin(fg + qﬁk)){q)c}{@q}T + (—cos(fy)

((%)(ICC — Iy)sin2(0c + ¢x) + Ly cos 2(0g + ¢)) — sin(6r)

(Igc cos* (0 + Pk) + Iy sin® (O + éx) — e sin 2(0g + ¢x) ) ){ PLH Py} Jda

MG = /0 “om cos(0;){ @,V dz

g = /0 “2m(B, + 61 + Bacos(20,)) {B D)

+ (MmN sin(0g + ¢x) + My cos(0q + ¢,)) cos(0){@LH{ @}
+ (MM cos(0g + dx) — M sin(0g + é)) sin(0;){ @ H{ P!} |dx

[(My] = /0 e 2[(mnm sin(Og + éx) + mGm cos(0g + ¢x)) sin(07){ @ IH{P,}"
— (MmN sin(0g + ¢x) + Ml cos(fg + ér)) sin(0;){ @} @} dx
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(Mz] = /0 e 2(— 07 (M 50 (06 + Br) + MG 080 + ¢1)){ D H P} +
(— sin(01)((%)(ICC — L) sin 2(0g + ¢x) + I cos 2(0g + ¢x)) — cos(6r)
(Iee sin® (0 + bx) + Iy cos*(0c + @) + Lyc sin2(0 + o)) ) { DL H B} ]da
(M5 = /0 " _om sin(0){®}{P,}" dx
D15) = [ 26 cos(h + 6u) — mGusin(O + 6) (B, e} +
(COS(HI)((%)(ICC — 1,,))sin 206 + ) + Ic cos 2(6G + x)) + sin(61)
(Icc cos*(0c + px) + Iyysin® (O + ¢x) — Inc sin 2(0c + ¢))){ @ H{ P} |da
[Mg] = /0 e 2(67 (M, sin (0 + i) + M cos(0 + ¢x)){ P H P} +
(sin(0r) ((3) (I — L) S10.2(0 + 65) + I cos 2(0 + ) + cos(61)
(Iee sin® (0 + by) + Ly co5* (0 + &x) + Lyc sin 2(0 + ¢x))){ D H{ P} Nda
[Mg] = 0.0
[Mz] = /0 " —2[c0s (01) (g sin(0 + @) + mGn cos(6 + b))
+ sin(0;) (mam, cos(0g + dr) — My sin(fg + (/)k)){CI)q}{(I)q}T]da:

ME) = /0 " om cos(6,){ B, H{®.) Tdx
(MG = /0 estin(HI){CDq}{q)c}de

le
MG = / 2lcos(0;) (i sin (6 + éx) + mCo 080 + ¢)) + sin(6r)
0

(MM cos(0g + dx) — Ml sin(fg + éx)) { P H{ Py} d
(M) = 0.0

Stiffness Matrix [M¢/]

14X14 °

[Mf{} = /Oe[m (— cos?(0;) — 6; — 28,01 + 28481 (cos(0;) — cos(291))) {®}{® )T
— 267 sin(0;) (mny, cos(Bg + b)) — MG sin(fg + o)) {PLH P}
— (I¢c c08*(0g + 1) + Ly sin®(0g + ¢r) — Iy sin2(0g + éx)) {@LH P} |dw
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M

M

M

= /(; e [m (—ﬁdé] sin(ﬁl) + Qﬁd sin(291)91 + sin(HI) COS(Q[) — 91) {‘b }{(I)C}T

— 261 cos(0;) (mny, cos(0 + br) — MG sin(Bg + ¢)){PLH{ P} T
~ ((5) e — L) in 28 + 9x) + Ty 0820 + Gu) (B H L)
0.0

0.0

/0 e[m (—Bdéfl sin(f;) — 28, sin(260;)8; + sin(8;) cos(6;) + 01) {®}{®}"
— 207 sin(07) (M sin (B + dr) + MG cos(Oa + op) ) {PLH D 3T

~ ((5) U = T sin 20 + 65) + g cos 20 + Gu) ¥, H P} o

le
/ [m (— sin2(01) — (9.[2 — QBpé[ — 2Bd0.1 COS(QHI)) {(I)C}{(PC}T
0
— 20, cos(0r) (M7 sin(Bg + ¢x) + MG cos (B + ¢r)) {®LH{ DT
— (I¢¢sin®(0g + @x) + Ly cos* (O + or) + Ly sin 2(0g + ¢ ) {®.}H{ P!} |dx
0.0

0.0

/0 ) (16" + cos®(87)) (mrj sin (8 + &) + MGy cos(B + 1))

+ (61 + cos(0r) sin(61)) (M, co8 (B + bk) — Ml sin(0 + ¢x){ Pa}{@}"
+ (0;sin(0;) ((Lee — Ing) sin2(0q + ¢r) + 21y cos 2(0g + ¢x)) + 26, cos(6;)
(Iecsin? (0 + ér) + Ly cos® (0 + éx) + Lye sin2(0 + ¢x))){ P H{PL} dz
[ TG+ 00 o500 + 60~ msins + )

+ (07 — cos(0r) sin(0;)) (M, sin (0 + ¢k) + MG cos(0c + ¢x)){ P H e}
— (01 cos(0r) ((Iee — L) sin2(0 + éx) + 21, cos 2(0 + dx)) + 207 sin(6;)
(Iec cos* (0 + ) + Iy sin® (O + bx) — Ic sin 2(0g + ¢x))){ @ }H{ P} |dw
/ (I — I¢¢) cos 2(0g — 0;) + 2@, sin2(0g — 07) — 2(Iny — Iec)Ba

0, sin 2(0;) sin(0;) — 41, B4br sin(0;) cos 2(0¢)){ @ H{ P} |da

0.0
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Myf| = / " s (01) (B + 201 + Facon(201)) + Buli) {2} {8}
+ (1 €050+ B5) — MG sin(6 + 60)) {8, HOY

Wit] = [ mteosn) (5 + 20 + ucos(am)) o} @7 +

- (MmN s (0 + Pr) + MG c08(0c + Pr) ) { By H{ PL} T |da

M| = 00

vil] = [ miede) e

Fuselage Matrix [M'],, ; :

) = | " omcos(@r) sin(u)) (2.}

— cos 1) 1 c05(0 + ) — i sin(0 + $0) (€.} ]d
M) = / imi{cos(0)) cos(5)){@.}

— sin(iy,) (M cos(0c + ¢r) — M sin(O + ¢x)){ P, }dz
(M) = / [misin(0) {2} do

M) = / [ (sin(dy) sin (1)) {82}

— 08 (U) (M S0 (0 + B5) + MGy co8(6 + ) {1}
(M) = / " [m(sin(0r) cos(te)) ()

— sin (¢ ) (M7 sin (O + dr) + MG cos(0g + dr) ) { P} d
M) = / " [mcos(0r) (@, )da

(M) = / " [[cos(6r) in () (m sin(B + ) + Mo co8(Bs + ) +

Sin(0) sin (1) (M7 080 + Bx) — MGy sin (0 + 64))|{ @} ]da
(M) = / " (1= cos(0) cos(abe) (mi sin(B + 65) + G cos(0 + )

— sin(0) cos(16e) (M c05(0 + Bk) — MG sin (0 + 1))@, }]da
[My] = / " [[cos(01) (mn co8(B + b) — o sin(Bs + 61))

— Sin(0)) (i $in (0 + 1) + MG c08(0: + ) {®, e
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(ML) = / " [mcos() {@,}] de

(Mh] = / " Imsin(n) {@,}] da
(ML) = [m(B, + Bacos(20,)){,}] da

Fuselage Matrix [M?],y;

(M) = /0 *[m(—Babir cos(uix) — Bysin(61) sin(s) — 5 cos(26) sin(6)) sin(x)) {@c}] da

[MIQQ} = /Oe [m(—ﬁdéf sin(vg) + Bp sin(6r) cos(y) + Ba cos(20;) sin(6;) cos(wk)){q)c}] dz

3] = 0o
le

(M3] = i [m(—p, cos(0;) sin(1y) — Bacos(20;) cos(0;) sin(yg)){P.}] dz
(M) = Ole [m(B, cos(0r) cos(r) + Bacos(20r) cos(0r) cos(vx)){ P }] dx
D8] = 00

[M3] = 0.0

[Mg] = 0.0

[Mg] = 0.0

p2] = 00

(M) = 00

AR [—m(?ﬁdél sin(20,)){®,}| do

Fuselage Matrix [M?],, ., :

Mf’l / [(m(—Bq cos(vg)( (le)i + z) — By cos(0r) cos(wk)(z (le); + xx)

+ asin(f;) cos(vy) + sin(6;) sin (¢ ) (e1 + e2 + Z (le)i + zx))
— (MmN sin(fg + éx) + mp, cos(0g + o)) cos(v)) { P} + (cos(6;) sin(v)
((;)(I“ Iy) sin 2(8 + o) + Ipyc cos 2(0c + @) + sin(6;) sin(vy)

(I¢c cos® (B + ¢) + Inpsin® (0 + dr) — Inc sin2(0 + ¢x))){ P} d
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/ [(m(—sin(0;) cos(vy,) (e1 + ep + Z (le)i + xx)) — Basin(vy)

() (te)i + zi) — By cos(0r) sin(vhi) (D (le)i + xx) + asin(fy) sin(¢y))

— (mnm sin(0g + ¢r) + mm cos(Og + o)) sin(Ye)){ P} + (— cos(6;)
cos(wk)((;)(lcg L) sin 2(0g + ¢x) + Ly cos 2(0g + ¢x)) — sin(6;)
cos(v ) (Iec cos® (O + x) + Ly, sin® (0 + ¢x) — Lyesin2(0g + ¢x))){ P} dx
/ [m(cos(fr)(e1 + ex + Z (le); + =) { P} +

(c08(61) () (Teg ~ Tan) S0 20+ b5) + I c052(6; + )

+ sin(0r) (¢ cos 2(0g + ox) + Ly sin *(0g + dx) — Iy sin2(0g + ¢x))){ @, }|dx
/0 [(m(cos(8r) cos(vk)(e1 + eo + Z (le); + xx))

+ B, sin(6;) cos(lﬁk)(z (le); + z) + acos(fr) cos(y))
+ (mnm cos(0g + dk) — MGy sin(Bg + dr)) cos(vg)){ P} + (cos(fr) sin (1))
(ICC sin2(0g + ¢Ic) + Lm COSQ(GG + (bk) —+ IWC sin 2(9(; + (bk))

+ sin(6;) sin(%)((%)(l« = L) sin 2(0c + ¢r) + Inc cos 2(0c + 1)) { D }do

| (= cos(Bryeos(un)(es €2 + 3 10+ a0)

+ B, sin(0r) sin(yh) (D (le)s + mk) + acos(6r) sin(yy))
+ (mnm cos(8g + ¢r) — MGy sin(fe + ¢r)) sin(1g)){®c} — (cos(fr) cos(1y)
(ICC Sin2(0(; + (bk) + IWU COSQ(GG + (bk) + IUC sin 2(9(; + (bk))

+ sin(6;) COS(%)((%)(I« — Iy) sin2(0c + @) + Inc cos 2(0 + 6x))){ D }]d

/ [(m(—sin(0)(ex + €2+ 3 (le)i + 1)) {@c}

+ (—sin(6r) (I¢¢ sin?(0g + ¢r) + I, cos? (0 + ¢p) + I sin 2(6g + ¢r))
+ 008(91)((%)(1« — Iny) sin2(0g + ¢x) + Inc cos 2(0 + ¢x))){ P }dz
/0 e[((Inn + Ie) cos() + cos(6) sin(yhe) (D (le); + )

(mnm cos(0g + dr) — mm sin(fg + dr)) — (Z (le)i + =)
sin(0r) sin (¢ ) (M, sin(0g + ¢r) + MG cos(0q + ¢r))){ Py} dx
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(M) = / (T + Te) sin(w) + sin(8r) cos(e) (3 (1e)s + 1)

(mnm sin(0c + ¢x) + MG cos(0c + ¢x)) — (Z (le)i + wg)
cos(0r) cos(Y) (mny, cos(0c + ¢r) — mlmsin(fa + ¢r))){ P, }dx

[M35] = /Ole [(— cos(0r) (Y (le)s + zk) (mnm sin (0 + ¢x) + MG cos(0 + ¢x))
—sin(07)(D _ (le); + @) (M1 c08(0g + pr) — Ml sin(0 + ¢x))){ Py} dz
[Mi] = /Ole [(— cos(6r) sin (k) (M sin(fa + @) + MG cos(0a + 6x))
— sin(6r) sin(Y) (M7 co8 (0 + dr) — MG sin(0a + 6x))){ @y })dz
[M3,] = /0 ‘ [(cos(8r) cos (k) (i sin(0a + @) + MGy cos(fa + ¢x))
+ sin(0r) cos(vx) (M cos(0c + ¢r) — MG sin(ba + ¢r))){Pq}]dz
[Mi5] = /Ole [(ma + sin(0r) (Mg, sin(0c + ¢x) + MG cos(0 + ¢x))
— cos(01) (mnn, cos(b + bi) — M sin(fg + éx))){ By }ldo

Fuselage Matrix [M*],

ML) = /0 “[m(Basin@) (37 (le)i+ z) — 2asin(ie) sin(0y)
+2 sin(01) COS(’(ﬁk)(el + e9 + Z (ZG)Z + *Tlc)
— Bacos(20) cos(0r) sin(ihy) ()  (le); + x)){ @} dz

[M}y] = /0 ' [m(2sin(0r) sin(x) (e1 + €2 + Y (le)i + @) — Bacos(ti) (D (le)s + )
+ 2a cos(¢y) sin(0r) + Ba cos(20r) cos(0r) cos(vx) (Y (le)s + zx)){®c}]d
vt = [ Gy sn@n)(3 e+ )~ 2acos(dn)
+ Bacos(20;) sin(0;) (D _ (le)i + 7)) {@c}dz
(M) = /0 ) [m(2 cos(0r) cos(vi) (e1 + e2 + Y _ (le); + xx) — 2asin(t)y) cos(dr)
+ Bacos(26;) sin(6y) sin() (Y (le)i + zx)){ D} de
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Vil

/0 " m(2a cos(1) cos(6) + 2cos(0r) sin(ie) (es + e2 + 3 (1) + )
— Bacos(20;) sin(67) cos(y) (Y _ (le)i + zx)){@c}dx

/0 (8, cos(6)(3 (le)s + ) + 2asin(6))

+ Bacos(20r) cos(61) (Y (le)i + wx)) {®c}Hdx

0.0
0.0
0.0

/le _
o L
/le _
o L
/le -
o L

m(Bacos(8;) cos(wr) (Y (le)i + ) + By cos(v) (Y (le)i + xk)){tbq}] dz
m(Bacos(9r) sin(v) (Y (le)i + xx) + By sin(@) (3 (L) + :ck)){CI)q}} dz

—m(es +eat I (1) + 1) {@o} | do

/Oe[m(aﬁd(éj — 26, cos(20;) cos(8;) + 6, cos?(6;)

— 267 cos(8;)) — acos(f;) — Bgcos(8;) sin(;) (e1 + e3)

— Ba(>_ (le)i + zi)0r + Bysin(0r)(ex + e + Y (le)i + i)
+ Bacos(20r) sin(0r) (e + e + Y _ (le)i + zx)){®c}]da
/Oe[m(a sin(0;) + aB4(20; cos(20;) sin(6;) — 07 cos(0;) sin(6;)
— 26 sin(07)) + Basin®(0r) (e1 + e2) — Ba(Y_ (le); + )b
+ (ﬁp + ﬁd COS(201)) COS(GI) (61 +ex+ Z (le)Z + .Qik)

— (O (le)i + z4) (BpBablr + Babir cos(20)) {2} dx
0.0

le .. . ..
/ [m(aBq(—2607 cos(26r) + 4012 sin(26r) 4 0 cos(6r)
0

— 0.[2 SiH(HI)) — ,Bdéj COS(Q[)(@l —+ e9 + Z (le), + xk)
- (61 + e9 + Z (le), + .Zk) + a,@d sm(291)){<1>q}]d:c
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Vector [V']

14X1

V] = /Ole[(— cos?(0) (mm cos(0g + @) — mlmsin(fa + ¢r))
+ (cos(0r) sin(0r) — 1) (M1 sin(0c + dx) + M cos(0c + bx))){ @}
+ (M1 cos (0 + pr) — MGmsin(0c + ¢x)) (Y (le)i + ax)
+ (I¢c cos* (O + ¢x) + Ly sin®(0g + ¢x) — L sin2(0 + éx))
(—2sin(60;)6; — Babr — sin(6;) (8, + Ba cos(26))))
+ ((%)(Icg — Iyy) sin2(0g + ¢x) + Iy cos 2(0g + éx))
(=2 cos(8;)0; — cos(6r) (B, + Bacos(26,)))){®.}]dz

[Vai] = /Ole[((cos(el) sin(0;) + 0r) (mig, cos(0 + dr) — MG sin(fg + 1))
— sin® () (ma)m sin (0 + ¢r) 4 MG c0s(0 + éx))){Dc}
+ ((mnm sin(0g + br) +mGm cos(Oa + o)) (D (le)i + )
+ (Iecsin® (0 + dk) + Lny cos” (B = @) + I¢ sin 2(8¢ + o))
(=2 cos(0r)0r = cos(0r) (B, + Ba cos(20)))
+((3) U — L) Sin 261 + ) + Iy cos2(0 + )
(—2sin(67)0; — Babr = sin(07) (B, + Ba cos(201)))){ ¥/ }]d

Vil = [ I+ e = 285in(26,)61)

— (%)(Iﬂﬂ — ICC) sin 2(9G + (9[) + IWC COS 2(0@ -+ 0[) -+

(5d91 sin(0r))((Lyy — I¢e) cos2(0g) + 21, sin 2(6¢))){ @, }dx
[V4L1} = /0 e[(2 sin(@l)él(mnm cos(Og + o) — mGy sin(fg + o)) +

2 cos(8; )01 (MM sin (0 + Br) + M cos(8 + b)) {P, }dx

The detailed expressions can be found in Ref. [188].
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Appendix C

Matrices assocliated with strain

energy

Stiffness Matrix [K”]

14X14 °

l

€

[KlEl] = ((Efcg COS QG —A EI,,K sin 0@){@2}{(I)Z}T)d.’1}

~

e

[Kf] = [KE] = ((El¢ycos b — BTy, sin0q){®2H{®!}T)dx

~

€

(EAD{®}{2!}" + roEAD{®}{®,}")dx

(i) = [K31]

o~

€

(K] = [Ki] (—EAn {7 H{ 2y} )da

~

€

(K% = ((ELy cosfg + El,sin 0g){®2}{ @1} )dx

~

€

(EADA®H @G} + EAD {07 }H{D}")da

(K] = [K3)]

— o o S S — T —

~

€

[K3i] = [KB]l = | (~EACG{®IH PG} )da

le
(EADs{® @7} + 1oEAD;{®} }{®/}"

[K33] =
+(rgEAD; — GJ){®,}{®,}")dx
[KE] = [KE] = /0 (—FAD{®"H Y — iy EAD{®' }{®' })da

KE] = / (BA{®}{&!)T)de
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Stiffness Matrix [K%]

El
lel

14X14 °

_ E’
- K2><1 -

— E’
- K3><1

— E’
- K4><1

— E’
- K3><2

_ E'
- K4><2

2 3 .06
a —Qa —0Q
350, - 51, 2" 51,0
Lo+ Lot
—Q —Q —Q
4102107
12 3 6
- ay — ——a2 — —a
350, - 51, % 51, °
1 . 1
351 T 1%
9, N l, N 2,

a —a —0Q
10507302 15°°
1 1 1
—ﬁal—ﬁw—ﬁa:’,

Le —aq + Le —ay + — Le
o T g™ T 3%
e 775 + 6

—3 1 6k —0Q
A LS N 5.5
1 1
a1 — %0
351 10°
e T le +2—lea
3508 D ET 157
fol
T
KIEX3
KE,
K%,
Ky,
Ky,
K,
Ky,
K{,
EAC, L
EA ‘51, " 31, " 3l
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EAC,, 2 2 8

K9E>:10 = Kl%x9 = EA (—576@1 - 3_lea2 - 3_lea3)
K§y =K, = %(5%6&1 + GileaQ + 3%6@3)
K {310 = E;jo(li?leal + 3%6612 + ;—Za?»)
KlEolxn = Kﬁlxlo = E]_:—;ljo (—%f;eal - %az - 2%)
K1E1’><11 = E;ljo(f;em + é—lleaz + 3—,1&3)

The detailed expressions can be found in Ref. [188].
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